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ABSTRACT

In this article, we give the complete characterization of U(FD4), U(FD8),
U(FD10), U(FD16) and U(FD20), where F is a �nite �eld of character-

istic p > 0 and Dn is the dihedral group of order 2n. We also �nd the

structure of U(FD2k ) and U(FD5.2k ), when F is a �nite �eld of charac-

teristic 2.
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1. Introduction

Let FG denote the group algebra of a group G over a �eld F and let U(FG)
be the unit group of FG. If H is a normal subgroup of G, then the natural
homomorphism G → G/H can be extended to an F -algebra homomorphism
FG → F (G/H). The kernel of this homomorphism ω(H), is the ideal of
FG generated by {h− 1 : h ∈ H}. The ideal ω(G) is called the augmentation
ideal of FG and is also denoted by ω(FG). Clearly, ω(H) = ω(FH)FG =
FGω(FH). We shall be writing (ω(H))n as ωn(H).

Let J(FG) be the Jacobson radical of FG. For any ideal I ⊆ J(FG),
the natural homomorphism FG → FG/I induces an epimorphism U(FG) →
U(FG/I), so that U(FG)/(1 + I) ∼= U(FG/I).

Let F be a �nite �eld of characteristic p and let G be a �nite group. An
element g ∈ G is called p-regular if (p, o(g)) = 1. Letm be the lcm of the orders
of p-regular elements of G and let η be the primitive mth root of unity over F .
Let T be the multiplicative group of integers t modulo m such that η → ηt is
an F -automorphism of F (η). Two p-regular elements x, y ∈ G are F -conjugate
if yt = g−1xg for some g ∈ G and t ∈ T . This is an equivalence relation and
partitions the p-regular elements of G into F -conjugacy classes. According to
Witt-Berman Theorem (Karpilovsky, 1992, Ch. 17, Theorem 5.3), the number
of F -conjugacy classes of p-regular elements of G is equal to the number of
non-isomorphic simple FG-modules.

Our notations are standard. For x, y ∈ G, (x, y) = x−1y−1xy and xy =
y−1xy. For a �nite subgroup H of G, Ĥ =

∑
h∈H h and γn(G) = nth term

of the lower central series of G. We shall denote by Dn the dihedral group of
order 2n. Thus Dn = 〈r, s|rn, s2, rsrs〉. AlsoM(n, F ) is the algebra of all n×n
matrices over F and GL(n, F ) is the general linear group of degree n over F .
Further, Fn is the extension �eld of F of degree n, F ∗ = F\{0} and Fn is the
direct summand of n copies of F . Cn is the cyclic group of order n and Ck

n is
the direct product of k copies of Cn. The group K4 = C2 × C2.

The study of the unit group of a group ring has been a classical topic in the
theory of group rings. Unit groups of several �nite group algebras have been
described in Creedon (2008), Creedon and Gildea (2008, 2011), Gaohua and
Yanyan (2011), Gildea (2008, 2010a,b), Khan (2009), Makhijani et al. (2014a,c,
2015). U(F2kDn) has been determined in Makhijani et al. (2014c) for odd n
and U(F2kD4) and U(F5kD5) in terms of split extension have been obtained by
Gildea in Creedon and Gildea (2011) and Gildea (2010b) respectively. Com-
plete characterization of U(FD6) and U(FD5) has been determined in Gaohua
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and Yanyan (2011) and Khan (2009) respectively. The conjugacy classes in Dn

are as follows:

For odd n:

1. The identity element: {1};

2. (n− 1)/2 conjugacy classes of size 2: {r±1}, . . . , {r±(n−1)/2};

3. All the re�ections: {ris : 0 ≤ i ≤ (n− 1)}.

For even n:

1. Two conjugacy classes of size 1: {1}, {rn/2};

2. n/2− 1 conjugacy classes of size 2: {r±1}, . . . , {r±(n/2−1)};

3. The re�ections fall into two conjugacy classes: {r2is : 0 ≤ i ≤ n/2 − 1}
and {r2i+1s : 0 ≤ i ≤ n/2− 1}.

So the number of conjugacy classes in Dn is (n+6)/2, if n is even and (n+3)/2,
if n is odd.

Lemma 1.1. Creedon (2008)If FG is a semisimple group algebra of an abelian
group G over a �eld F and F contains a primitive mth root of unity, where
m = exp(G) and n = |G|, then FG ∼= Fn.

Lemma 1.2. Milies and Sehgal (2002)Let RG be a semisimple group algebra.
If G′ denotes the commutator subgroup of G, then RG = RGeG′ ⊕ ∆(G,G′),
where RGeg′

∼= R(G/G′) is the sum of all commutative simple components of
RG and ∆(G,G′) is the sum of all the others.

Lemma 1.3. Milies and Sehgal (2002)(Wedderburn-Artin)A ring R is semisim-
ple if and only if it is a direct sum of �nite number of matrix algebras over
division rings.

Lemma 1.4. Milies and Sehgal (2002) Let G be a group and let R be a com-
mutative ring. The set {γi}i∈I of all class sums is a basis of Z(RG), the center
of RG over R.

The paper is organized as follows. In Section 2, we give a characterization
of U(FD4). Also, we give a description of U(FD8) and U(FD16), if F has odd
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characteristic. In Section 3, we study U(FD10), where F is an arbitrary �nite
�eld. We also study U(FD20), if F has odd characteristic. Finally, in Section 4,
we have investigated U(FD2k) and U(FD5.2k), if F is a �eld of characteristic
2.

2. Dihedral groups of orders 8, 16 and 32

In this section, we study the structure of U(FD2n) for n = 2, 3 and 4.

Theorem 2.1. Let F be a �nite �eld of characteristic p with |F | = pn = q.
Let V1 = 1 + J(FD4) and V2 = 1 + ω(D′4).

1. If p = 2, then

(a) U(FD4)/V1 ∼= F ∗;

(b) V1 is a group of order 27n;

(c) V2 is an abelian group of order 24n;

(d) V1/V2 is a group of exponent 4 and order 23n;

(e) U(FD4) is a nilpotent group of class 2.

2. If p > 2, then U(FD4) ∼= GL(2, F )× (F ∗)4.

Proof. 1. (a) Let p = 2. The commutator subgroup of D4 is D′4 = {1, r2}
and D4/D

′
4
∼= K4. Thus F (D4/D

′
4) ∼= FD4/ω(D′4) ∼= FK4 and

dimF (ω(D′4)) = 4. Since ω(D′4) is nilpotent, by (Lam, 1991, Lemma
4.11), ω(D′4) ⊆ J(FD4). Now, J(FK4) ∼= J(FD4)/ω(D′4). Let
K4 = {1, a, b, ab}. Then J(FK4) = α1(1 + ab) + α2(1 + b) + α3(1 +
a); α1, α2, α3 ∈ F , dimF (J(FK4)) = 3 and J4(FK4) = 0. Thus,
dimF (J(FD4)) = 7, J4(FD4) ⊆ ω(D′4) and dimF (FD4/J(FD4)) =
1. Hence, FD4/J(FD4) ∼= F and

U(FD4)/V1 ∼= U(FD4/J(FD4)) ∼= F ∗.

(b) Since V1 = 1 + J(FD4) and dimF (J(FD4)) = 7, |V1| = |J(FD4)| =
27n.

(c) Since V2 = 1 + ω(D′4) and ω2(D′4) = 0, V ′2 = 1. Also, |V2| =
|ω(D′4)| = 24n.

(d) Let v = v1V2 ∈ V1/V2 where v1 = 1 + x ∈ V1, where x ∈ J(FD4).
As J4(FD4) ⊆ ω(D′4), so v41 = 1 + x4 ∈ V2. Hence V1/V2 is a group
of exponent 4. Further, |V1/V2| = 23n.
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(e) Since ω(D′4) is nilpotent, 1 + ω(D′4) ⊆ U(FD4) and U(FD4)/(1 +
ω(D′4)) ∼= U(FK4) is an abelian group. So U(FD4)′ ⊆ 1 + ω(D′4).
Further, ω(D′4) ⊆ Z(FD4), thus γ3(U(FD4)) = 1 and U(FD4) is
nilpotent of class 2.

2. Since p > 2, FD4 is semisimple. Hence, by Lemma 1.3, FD4
∼= M(n1, D1)⊕

M(n2, D2) ⊕ · · · ⊕M(nt, Dt), where D
′
is are �nite dimensional division

algebras over F . Since F is �nite, D′is are �nite �elds and at least
one nk > 1. As dimF Z(FD4) = 5, nk > 2 is impossible. Therefore
nk ≤ 2 for all k ∈ {1, 2, . . . , t}. Also F (D4/D

′
4) ∼= FK4

∼= F 4 and
FD4

∼= M(2, F )⊕ F 4, by Lemmas 1.1 and 1.2.

Theorem 2.2. Let F be a �nite �eld of characteristic p > 2 with |F | = pn = q.
Then

U(FD8) ∼=

{
GL(2, F )3 × C4

q−1, if q ≡ ±1 mod 8 ;

GL(2, F )×GL(2, F2)× C4
q−1, if q ≡ ±3 mod 8.

Proof. Since p > 2, FD8 is semisimple and by Lemma 1.3, FD8
∼= M(n1, D1)⊕

M(n2, D2)⊕· · ·⊕M(nt, Dt), where Di's are �nite dimensional division algebras
over F . Since F is �nite, Di's are �nite �elds and at least one nk > 1. Clearly
nk ≤ 3 for all k. Now F (D8/D

′
8) ∼= FK4

∼= F 4. Further, since dimF Z(FD8) =
7, we have the following possibilities:

FD8
∼= M(2, F )⊕M(2, F )⊕M(2, F )⊕ F 4

or
∼= M(2, F )⊕M(2, F2)⊕ F 4

or
∼= M(2, F3)⊕ F 4.

The conjugacy classes of D8 are C1 = {1}, C2 = {r4}, C3 = {r, r7}, C4 =
{r2, r6}, C5 = {r3, r5}, C6 = {rs, r3s, r5s, r7s} and C7 = {s, r2s, r4s, r6s} and
by Lemma 1.4, Z(FD8) = F Ĉ1 + F Ĉ2 + F Ĉ3 + F Ĉ4 + F Ĉ5 + F Ĉ6 + F Ĉ7.

If p ≡ ±1 mod 8, then pn ≡ ±1 mod 8 for all n. So, Ĉi
pn

= Ĉi for all,
1 ≤ i ≤ 7. Thus xp

n

= x, for all x ∈ Z(FD8) and

FD8
∼= M(2, F )⊕M(2, F )⊕ M(2, F )⊕ F 4.

Malaysian Journal of Mathematical Sciences 423



Sahai, M. & Ansari, S. F.

If p ≡ ±3 mod 8 and n is even, then pn ≡ 1 mod 8. Again, Ĉi
pn

= Ĉi for
all, 1 ≤ i ≤ 7 and

FD8
∼= M(2, F )⊕M(2, F )⊕ M(2, F )⊕ F 4.

If p ≡ ±3 mod 8 and n is odd, then p2n ≡ 1 mod 8. So, Ĉi
p2n

= Ĉi for all
1 ≤ i ≤ 7. Then, in this case, xp

2n

= x, for any x ∈ Z(FD8) and

FD8
∼= M(2, F )⊕ M(2, F2)⊕ F 4.

Hence

FD8
∼=

{
M(2, F )3 ⊕ F 4, if q ≡ ±1 mod 8 ;

M(2, F )⊕M(2, F2)⊕ F 4, if q ≡ ±3 mod 8 .

Theorem 2.3. Let F be a �nite �eld of characteristic p > 2 with |F | = pn = q.
Then

U(FD16) ∼=


GL(2, F )7 × C4

q−1, if q ≡ ±1 mod 16;

GL(2, F )×GL(2, F2)×GL(2, F4)× C4
q−1, if q ≡ ±3 or ±5 mod 16;

GL(2, F )3 ×GL(2, F2)2 × C4
q−1, if q ≡ ±7 mod 16.

Proof. As, F (D16/D
′
16) ∼= FK4

∼= F 4, we have

FD16
∼= F 4 ⊕

(
⊕k

i=1 M(ni, Di)

)
where ni ≥ 2 and Di's are �nite dimensional division algebras over �elds which
are extensions of F . Hence,

Z(FD16) ∼= F 4 ⊕
(
⊕k

i=1 Di

)
.

Since dimF Z(FD16) = 11,
∑k

i=1[Di : F ] = 7.

The conjugacy classes of D16 are C1 = {1}, C2 = {r8}, C3 = {r±1}, C4 =
{r±2}, C5 = {r±3}, C6 = {r±4}, C7 = {r±5}, C8 = {r±6}, C9 = {r±7}, C10 =
{s, r2s, . . . , r14s} and C11 = {rs, r3s, . . . , r15s}.

For any l ∈ N, it is easy to see that xq
l

= x for all x ∈ Z(FD16) if and only

if Ĉq
l

i = Ĉi for all i ∈ {1, 2, . . . , 11}. This is possible if and only if rq
l

= r or
r−1. This is equivalent to 16|(ql − 1) or 16|(ql + 1).
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Now for each i ∈ {1, 2, . . . , k}, let D∗i = 〈yi〉. Then, xq
l

= x for all x ∈
Z(FD16) if and only if yq

l

i = yi. This is possible if and only if [Di : F ]|l for
all i = 1, . . . , k. Thus the least number t such that 16|(qt − 1) or 16|(qt + 1) is
t = l.c.m.{[Di : F ] : 1 ≤ i ≤ k}. Now if,

1. q ≡ ±1 mod 16, then t = 1;

2. q ≡ ±3 or ±5 mod 16, then t = 4;

3. q ≡ ±7 mod 16, then t = 2.

Clearly m = 16. Let a= number of simple components in the Wedderburn
decomposition of FD16. Then

1. q ≡ 1 mod 16.

T = {1} mod 16 and hence Ci, i ∈ {1, 2, . . . , 11} are the p-regular F -
conjugacy classes. Hence a = 11.

2. q ≡ −1 mod 16.

T = {1,−1} mod 16 and hence Ci, i ∈ {1, 2, . . . , 11} are the p-regular
F -conjugacy classes. Hence a = 11.

3. q ≡ 3 or −5 mod 16.

T = {1, 3, 9, 11} mod 16. Since r9 = r−7, r11 = r−5 and (r2)3 = r6, the
p-regular F -conjugacy classes are {1}, {r±1, r±3, r±5, r±7}, {r±2, r±6},
{r±4}, {r8}, {rs, r3s, . . . , r15s} and {s, r2s, . . . , r14s}. Hence a = 7.

4. q ≡ 5 or −3 mod 16.

T = {1, 5, 9, 13} mod 16. Since r9 = r−7, r13 = r−3 also (r2)5 = r−6, the
p-regular F -conjugacy classes are {1}, {r±1, r±3, r±5, r±7}, {r±2, r±6},
{r±4}, {r8}, {rs, r3s, . . . , r15s} and {s, r2s, . . . , r14s}. Hence a = 7.

5. q ≡ 7 mod 16

T = {1, 7} mod 16. Since (r3)7 = r5, the p-regular F -conjugacy classes
are given by {1}, {r±1, r±7}, {r±2}, {r±3, r±5}, {r±4}, {r±6}, {r8},
{rs, r3s, . . . , r15s} and {s, r2s, . . . , r14s}. Hence a = 9.

6. q ≡ −7 mod 16.

T = {1, 9} mod 16. Since r9 = r−7, (r3)9 = r−5, the p-regular F -
conjugacy classes are {1}, {r±1, r±7}, {r±2}, {r±3, r±5}, {r±4}, {r±6},
{r8}, {rs, r3s, . . . , r15s} and {s, r2s, . . . , r14s}. Hence a = 9.
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Now, we have the following possibilities for [Di : F ]ki=1 depending on q:

1. q ≡ ±1 mod 16, then [Di : F ]ki=1 = (1, 1, 1, 1, 1, 1, 1).

2. q ≡ ±3 or ±5 mod 16, then [Di : F ]ki=1 = (1, 2, 4).

3. q ≡ ±7 mod 16, then [Di : F ]ki=1 = (1, 1, 1, 2, 2).

Due to dimension constraints, ni = 2 for all 1 ≤ i ≤ k. Hence

FD16
∼=


M(2, F )7 ⊕ F 4, if q ≡ ±1 mod 16;

M(2, F )⊕M(2, F2)⊕M(2, F4)⊕ F 4, if q ≡ ±3 or ±5 mod 16;

M(2, F )3 ⊕M(2, F2)2 ⊕ F 4, if q ≡ ±7 mod 16.

3. Dihedral groups of orders 20 and 40

In this section, we �nd the structure of U(FD5n), n = 2, 4.

Theorem 3.1. Let F be a �nite �eld of characteristic p with |F | = q = pn.
Let V1 = 1 + J(FD10) and let V2 = 1 + ω(H), where H = {1, r5}. Then

1. If p = 2, then

(a)

U(FD10)/V1 ∼=

{
GL(2, F )2 × C2n−1, if n is odd;

GL(2, F2)× C2n−1, if n is even.

(b) V1 is a group of exponent 4, order 211n and nilpotent of class at most
3;

(c) V2 is an abelian group of order 210n;

(d) V1/V2 is a group of exponent 2 and order 2n.

2. If p = 5, then

(a) U(FD10)/V1 ∼= C4
5n−1;

(b) V1 is a nilpotent group of class 4 and order 516n.
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3. If p - |D10|, then

U(FD10) ∼=

{
GL(2, F )4 × C4

q−1, if q ≡ ±1 mod 10;

GL(2, F2)2 × C4
q−1, if q ≡ ±3 mod 10.

Proof. 1. (a) Let p = 2. Then H = {1, r5} is a normal subgroup of
D10 and D10/H ∼= D5. Thus F (D10/H) ∼= FD10/ω(H) ∼= FD5

and dimF (ω(H)) = 10. Since ω(H) is a nilpotent ideal, ω(H) ⊆
J(FD10). Now, J(FD5) ∼= J(FD10)/ω(H). By (Makhijani et al.,

2014b, Theorem 3.1), J(FD5) = FD̂5 and dimF (J(FD5)) = 1. So,
dimF (J(FD10)) = 11 and dimF (FD10/J(FD10)) = 9.

Now, the 2-regular elements in D10 are 1, r2, r−2, r4 and r−4.
Hence m = 5. Let a be the number of simple components in the
Wedderburn decomposition of FD10.

i. If n = 0 mod 4, then q ≡ 1 mod 5.
T = {1} mod 5 and {1}, {r±2}, {r±4} are the 2-regular F -
conjugacy classes. Hence a = 3.

ii. If n = 2 mod 4, then q ≡ −1 mod 5.
T = {1, 4} mod 5 and {1}, {r±2}, {r±4} are the 2-regular F -
conjugacy classes. Hence a = 3.

iii. If n = 1 mod 2, then q ≡ ±2 mod 5.
T = {1, 2, 3, 4} mod 5 and {1}, {r±2, r±4} are the 2-regular F -
conjugacy classes. Hence a = 2.

Hence,

FD10/J(FD10) ∼=

{
F ⊕M(2, F )2, if q ≡ ±1 mod 5;

F ⊕M(2, F2), if q ≡ ±2 mod 5.

(b) Since J2(FD5) = 0, so J2(FD10) ⊆ ω(H) and J4(FD10) = 0.
Hence V1 is a group of exponent 4 which is nilpotent of class at
most 3. Further, since V1 = 1 + J(FD10), |V1| = |J(FD10)| = 211n.

(c) Since V2 = 1 + ω(H) and ω2(H) = 0, V ′2 = 1. Hence V2 is abelian.
Further, |V2| = |ω(H)| = 210n.

(d) Let v = v1V2 ∈ V1/V2 where v1 ∈ V1. For x ∈ J(FD10), let v1 =
1 + x so that v21 = 1 + x2 ∈ V2. Hence V1/V2 is a group of exponent
2. Further, |V1/V2| = 2n.

2. (a) Let p = 5 and let K = {1, r±2, r±4}. Then K is a normal sub-
group of D10. By (Passman, 1977, Lemma 1.17 and Theorem 2.7),
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J(FD10) = ω(K). Thus FD10/J(FD10) ∼= FK4
∼= F 4 by Lemma

1.1 and dimF (J(FD10)) = 16. Hence,

U(FD10)/V1 ∼= U(FD10/J(FD10)) ∼= (F ∗)4.

(b) J5(FD10) = ω5(K) = 0. Hence V1 is nilpotent of class at most 4.
As r2+4 ∈ J(FD10), so 4s+r8s, 4r+r3, 4rs+r9s ∈ J(FD10). Thus
x = r2, y = 1 + 4s+ r8s, z = 1 + 4r+ r3 and w = 1 + 4rs+ r9s ∈ V1.
Now,

A = (x, y) = 3 + 4r2 + r4 + 3r6 + (1 + 2r2 + r4 + 3r6 + 3r8)s,

B = (z,A) = 2 + r3 + r5 + r6 + 3r8 + r9 + (3 + 4r + 4r2 + 2r3

+ 2r5 + 4r6 + r7 + r8 + 4r9)s,

C = (w,B) = 4 + 3r + 2r2 + 3r3 + r4 + 3r6 + 3r8 + 2r9

+ (4r + 2r2 + 4r5 + 3r6 + r7 + 3r8 + r9)s 6= 1.

Hence V1 is nilpotent of class 4. In the above expression,

y−1 = 4 + r4 + r6 + (4 + 4r2 + r6 + r8)s,

A−1 = 3 + r6 + 3r4 + 4r8 + (4 + 3r2 + 4r4 + 2r6 + 2r8)s,

z−1 = 2 + r + 2r2 + 4r4 + 2r5 + 2r6 + 3r7 + r8 + 4r9,

B−1 = 2 + 2r + 3r2 + 2r3 + r6 + 2r7 + 4r8

+ 2r9 + (1 + 4r + r3 + r4 + 4r5 + 3r6 + 4r7 + 2r8 + 2r9)s,

w−1 = 2 + 4r6 + (3r + 2r7)s.

Further, since V1 = 1 + J(FD10), |V1| = |J(FD10)| = 516n.

3. As F (D10/D
′
10) ∼= FK4

∼= F 4, so by using the Wedderburn-Artin Theo-
rem and Lemma 1.2, we have

FD10
∼= F 4 ⊕

(
⊕k

i=1 M(ni, Di)

)
,

where ni ≥ 2 and Di's are �nite �elds. Therefore,

Z(FD10) ∼= F 4 ⊕
(
⊕k

i=1 Di

)
.

Since, dimF Z(FD10) = 8,
∑k

i=1[Di : F ] = 4.

The conjugacy classes of D10 are C1 = {1}, C2 = {r5}, C3 = {r±1},
C4 = {r±2}, C5 = {r±3}, C6 = {r±4}, C7 = {s, r2s, . . . , r8s} and C8 =
{rs, r3s, . . . , r9s}.
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For any l ∈ N, it is easy to see that xq
l

= x for all x ∈ Z(FD10) if and

only if Ĉq
l

i = Ĉi for all 1 ≤ i ≤ 8. This is possible, if and only if rq
l

= r
or r−1 or equivalently 10|(ql − 1) or 10|(ql + 1).

Now for each i, 1 ≤ i ≤ k, let D∗i = 〈yi〉. Then, xq
l

= x for all x ∈
Z(FD10) if and only if yq

l

i = yi. This is possible if and only if [Di : F ]|l
for all i ∈ {1, . . . , k}. Thus the least number t such that 10|(qt − 1) or
10|(qt + 1) is t = l.c.m.{[Di : F ] : 1 ≤ i ≤ k}.
If

(a) q ≡ ±1 mod 10, then t = 1.

(b) q ≡ ±3 mod 10, then t = 2.

We have m = 10. Let a= number of simple components in the Wedder-
burn decomposition of FD10. Then

(a) q ≡ 1 mod 10.

T = {1} mod 10, so Ci, 1 ≤ i ≤ 8 are the p-regular F -conjugacy
classes. Hence a = 8.

(b) q ≡ −1 mod 10.

T = {1,−1} mod 10, so Ci, 1 ≤ i ≤ 8 are the p-regular F -conjugacy
classes. Hence a = 8.

(c) q ≡ ±3 mod 10.

T = {1, 3, 7, 9} mod 10. Since r7 = r−3, r9 = r−1 and (r2)3 = r−4,
the p-regular F -conjugacy classes are {1}, {r±1, r±3}, {r±2, r±4},
{r5}, {s, r2s, . . . , r8s} and {rs, r3s, . . . , r9s}. Hence a = 6.

Now, we have the following possibilities for [Di : F ]ki=1 depending on q,

(a) q ≡ ±1 mod 10, then [Di : F ]ki=1 = (1, 1, 1, 1).

(b) q ≡ ±3 mod 10, then [Di : F ]ki=1 = (2, 2).

Due to dimension constraints, ni > 2 is impossible for any 1 ≤ i ≤ k.
Thus ni = 2 for all 1 ≤ i ≤ k and

FD10
∼=

{
M(2, F )4 ⊕ F 4, if q ≡ ±1 mod 10;

M(2, F2)2 ⊕ F 4, if q ≡ ±3 mod 10.

Theorem 3.2. Let F be a �nite �eld of characteristic p with |F | = q = pn.
Let V1 = 1 + J(FD20).
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1. If p = 5, then

(a) U(FD20)/V1 ∼= GL(2, F )× C4
5n−1;

(b) V1 is a nilpotent group of class 4 and order 532n.

2. If p - |D20|, then

U(FD20) ∼=



GL(2, F )9 × C4
q−1, if q ≡ ±1 mod

20;
GL(2, F )×GL(2, F2)2 ×GL(2, F4)× C4

q−1, if q ≡ ±3 or ±7
mod 20;

GL(2, F )5 ×GL(2, F2)2 × C4
q−1, if q ≡ ±9 mod

20;

Proof. 1. (a) Let p = 5 and let H = {1, r±4, r±8}. Then H is a nor-
mal subgroup of D20. Again by (Passman, 1977, Lemma 1.17 and
Theorem 2.7), J(FD20) = ω(H). Thus FD20/J(FD20) ∼= FD4

∼=
M(2, F )⊕ F 4, by Theorem 2.1 and dimF J(FD20) = 32. Hence,

U(FD20)/V1 ∼= U(FD20/J(FD20)) ∼= GL(2, F )× (F ∗)4.

(b) J5(FD20) = ω5(H) = 0. Hence V1 is nilpotent of class at most 4.
As h = r4 − 1 and k = s(r4 − 1) = r16s − s ∈ J(FD20), so x = r4

and y = 1− s+ r16s ∈ V1. Then,

A = (x, y) = 3 + 4r4 + r8 + 3r12 + (1 + 2r4 + r8 + 3r12 + 3r16)s,

B = (x,A) = 1 + (4r4 + 3r8 + 2r12 + r16)s,

C = (x,B) = 1 + (2 + 2r4 + 2r8 + 2r12 + 2r16)s 6= 1.

Hence V1 is nilpotent of class 4. In the above expression,

y−1 = 4 + r8 + r12 + (4 + 4r4 + r12 + r16)s,

A−1 = 3 + 3r8 + r12 + 4r16 + (4 + 3r4 + 4r8 + 2r12 + 2r16)s,

B−1 = 1 + (r4 + 2r8 + 3r12 + 4r16)s.

Further, since V1 = 1 + J(FD20), |V1| = |J(FD20)| = 532n.

2. Now F (D20/D
′
20) ∼= FK4

∼= F 4. Hence

FD20
∼= F 4 ⊕

(
⊕k

i=1 M(ni, Di)

)
,
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where ni ≥ 2 and Di's are �nite �elds. Therefore,

Z(FD20) ∼= F 4 ⊕
(
⊕k

i=1 Di

)
.

Since, dimF Z(FD20) = 13,
∑k

i=1[Di : F ] = 9.

The conjugacy classes of D20 are given by C1 = {1}, C2 = {r10}, C3 =
{r±1}, C4 = {r±2}, C5 = {r±3}, C6 = {r±4}, C7 = {r±5}, C8 = {r±6},
C9 = {r±7}, C10 = {r±8}, C11 = {r±9}, C12 = {s, r2s, . . . , r18s} and
C13 = {rs, r3s, . . . , r19s}.

Now for any l ∈ N, we have xql = x for all x ∈ Z(FD20) if and only if

Ĉq
l

i = Ĉi for all 1 ≤ i ≤ 13. This is possible if and only if rq
l

= r or r−1

or equivalently 20|(ql − 1) or 20|(ql + 1).

For each i, 1 ≤ i ≤ k, let D∗i = 〈yi〉. Then xq
l

= x for all x ∈ Z(FD20)

if and only if yq
l

i = yi. This is possible if and only if [Di : F ]|l for all
i ∈ {1, . . . , k}. Thus the least number t such that 20|(qt−1) or 20|(qt+1)
is t = l.c.m.{[Di : F ] : 1 ≤ i ≤ k}.
If

(a) q ≡ ±1 mod 20, then t = 1.

(b) q ≡ ±3 or ±7 mod 20, then t = 4.

(c) q ≡ ±9 mod 20, then t = 2.

Clearlym = 20. Let a= number of simple components in the Wedderburn
decomposition of FD20. Then

(a) q ≡ 1 mod 20.

T = {1} mod 20 and hence Ci, 1 ≤ i ≤ 13 are the p-regular F -
conjugacy classes. Hence a = 13.

(b) q ≡ −1 mod 20.

T = {1,−1} mod 20 and hence Ci, 1 ≤ i ≤ 13 are the p-regular
F -conjugacy classes. Hence a = 13.

(c) q ≡ 3 or 7 mod 20.

T = {1, 3, 7, 9} mod 20. Since (r2)3 = r6 and (r4)7 = r8, the
p-regular F -conjugacy classes are {1}, {r±1, r±3, r±7, r±9}, {r±5},
{r10}, {r±2, r±6}, {r±4, r±8}, {s, r2s, . . . , r18s}, {rs, r3s, . . . , r19s}.
Hence a = 8.

(d) q ≡ 9 mod 20.

T = {1, 9} mod 20. Since (r3)9 = r7, the p-regular F -conjugacy
classes are {1}, {r±1, r±9}, {r±3, r±7}, {r±2}, {r±4}, {r±5}, {r±6},
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{r±8}, {r10}, {s, r2s, . . . , r18s} and {rs, r3s, . . . , r19s}. Hence a =
11.

(e) q ≡ −9 mod 20.

T = {1, 11} mod 20. Since r11 = r−9 and (r3)11 = r−7, the p-
regular F -conjugacy classes are given by {1}, {r±1, r±9}, {r±2},
{r±3, r±7}, {r±4}, {r±5}, {r±6}, {r±8}, {r10}, {s, r2s, . . . , r18s} and
{rs, r3s, . . . , r19s}. Hence a = 11.

(f) q ≡ −3 or −7 mod 20.

T = {1, 9, 13, 17} mod 20. Since r13 = r−7, r17 = r−3, (r2)17 =
r−6 and (r4)17 = r8, the p- regular F -conjugacy classes are given
by {1}, {r±1, r±3, r±7, r±9}, {r±2, r±6}, {r±4, r±8}, {r±5}, {r10},
{s, r2s, . . . , r18s} and {rs, r3s, . . . , r19s}. Hence a = 8.

Now, we have the following possibilities for [Di : F ]ki=1 depending on q,

(a) q ≡ ±1 mod 20, then [Di : F ]ki=1 = (1, 1, 1, 1, 1, 1, 1, 1, 1).

(b) q ≡ ±3 or ±7 mod 20, then [Di : F ]ki=1 = (1, 2, 2, 4).

(c) q ≡ ±9 mod 20, then [Di : F ]ki=1 = (1, 1, 1, 1, 1, 2, 2).

Due to dimension constraints, ni > 2 is impossible for any 1 ≤ i ≤ k.
Thus ni = 2 for all 1 ≤ i ≤ k and

FD20
∼=


M(2, F )9 ⊕ F 4, if q ≡ ±1 mod 20;

M(2, F )⊕M(2, F2)2 ⊕M(2, F4)⊕ F 4, if q ≡ ±3 or ±7 mod 20;

M(2, F )5 ⊕M(2, F2)2 ⊕ F 4, if q ≡ ±9 mod 20.

4. Finite �elds of characteristic 2

In this section, we �nd the structure of U(FD2k) and U(FD5.2k) over �nite
�elds of characteristic 2.

Lemma 4.1. Let F be a �nite �eld of characteristic 2. Then dimF (J(FD2k)) =
2k+1 − 1 for all k = 2, 3, . . . .

Proof. If k = 2, then by Theorem 2.1, dimF (J(FD4)) = 7. Suppose that

dimF (J(FD2k−1)) = 2k − 1. If H = 〈r2k−1〉 = {1, r2k−1}, then H is normal
in D2k and F (D2k/H) ∼= FD2k/ω(H) ∼= FD2k−1 . So dimF (ω(H)) = 2k.
Now ω(H) is nilpotent and so, ω(H) ⊆ J(FD2k). Therefore J(FD2k−1) ∼=
J(FD2k)/ω(H) and dimF (J(FD2k)) = 2k − 1 + 2k = 2k+1 − 1.
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Theorem 4.1. Let F be a �nite �eld of characteristic 2 with 2n elements. Let

V1 = 1 + J(FD2k) and V2 = 1 + ω(H), where H = 〈r2k−1〉. Then

1. U(FD2k)/V1 ∼= F ∗;

2. V1/V2 is a group of order 2(2
k−1)n.

Proof. 1. Let H = {1, r2k−1}. Then H is normal subgroup of D2k . So
D2k/H ∼= D2k−1 . Thus FD2k/ω(H) ∼= FD2k−1 and dimF (ω(H)) = 2k.
Now ω(H) is nilpotent and so, ω(H) ⊆ J(FD2k). Thus J(FD2k−1) ∼=
J(FD2k)/ω(H) and by Lemma 4.1, dimF (J(FD2k)) = 2k+1 − 1. So,
dimF (FD2k/J(FD2k)) = 1, FD2k/J(FD2k) ∼= F and U(FD2k)/V1 ∼=
U(FD2k/J(FD2k)) ∼= F ∗.

2. Obviously, |V1| = |J(FD2k)| = 2(2
k+1−1)n and |V2| = |ω(H)| = 2(2

k)n.

Hence |V1/V2| = 2(2
k−1)n.

Lemma 4.2. Let F be a �nite �eld of characteristic 2. Then dimF (J(FD5.2k)) =
5.2k+1 − 9, for all k = 0, 1, 2, . . . .

Proof. If k = 0, then by (Makhijani et al., 2014b, Theorem 3.1), dimF (J(FD5)) =

1. Suppose that dimF (J(FD5.2k−1)) = 5.2k − 9 and let H = 〈r5.2k−1〉 =

{1, r5.2k−1}. ThenH is normal inD5.2k and hence F (D5.2k/H) ∼= FD5.2k/ω(H) ∼=
FD5.2k−1 . So dimF (ω(H)) = 5.2k. As ω(H) is nilpotent, ω(H) ⊆ J(FD5.2k).
Therefore J(FD5.2k−1) ∼= J(FD5.2k)/ω(H) and dimF (J(FD5.2k)) = 5.2k−9 +
5.2k = 5.2k+1 − 9.

Theorem 4.2. Let F be a �nite �eld of characteristic 2 with 2n elements. Let

V1 = 1 + J(FD5.2k) and V2 = 1 + ω(H), where H = Z(D5.2k) = {1, r5.2k−1}.
Then

1.

U(FD5.2k)/V1 ∼=

{
GL(2, F )×GL(2, F )× C2n−1, if n is odd;

GL(2, F2)× C2n−1, if n is even.

2. V1/V2 is a group of order 2(5.2
k−9)n.
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Proof. Let H = {1, r5.2k−1}. Then H is a normal subgroup of D5.2k and
D5.2k/H ∼= D5.2k−1 . Thus FD5.2k/ω(H) ∼= FD5.2k−1 and dimF (ω(H)) =
5.2k. Since ω(H) is nilpotent, ω(H) ⊆ J(FD5.2k). Now, J(FD5.2k−1) ∼=
J(FD5.2k)/ω(H). By Lemma 4.2, dimF (J(FD5.2k)) = 5.2k+1 − 9. Hence
dimF (FD5.2k/J(FD5.2k)) = 9.

Now, the 2-regular elements in D5.2k are 1, r2
k

, r−2
k

, r2
k+1

and r−2
k+1

.
Hence m = 5. Let a be the number of simple components in the Wedderburn
decomposition of FD5.2k .

1. If n = 0 mod 4, then q ≡ 1 mod 5.

T = {1} mod 5 and {1}, {r±2k}, {r±2k+1} are the 2-regular F -conjugacy
classes. Hence a = 3.

2. If n = 2 mod 4, then q ≡ −1 mod 5.

T = {1, 4}mod 5 and {1}, {r±2k}, {r±2k+1} are the 2-regular F -conjugacy
classes. Hence a = 3.

3. If n = 1 mod 2, then q ≡ ±2 mod 5.

T = {1, 2, 3, 4}mod 5 and {1}, {r±2k , r±2k+1} are the 2-regular F -conjugacy
classes. Thus a = 2.

Hence,

FD5.2k/J(FD5.2k) ∼=

{
F ⊕M(2, F )2, if q ≡ ±1 mod 5;

F ⊕M(2, F2), if q ≡ ±2 mod 5.

Since V1 = 1+J(FD5.2k) and V2 = 1+ω(H), |V1| = |J(FD5.2k)| = 2(5.2
k+1−9)n

and |V2| = |ω(H)| = 2(5.2
k)n. Hence |V1/V2| = 2(5·2

k−9)n.

5. Conclusion

For a �nite �eld F , we have given the structures of U(FD4) and U(FD10)
in Theorems 2.1 and 3.1 , whereas the structure of U(FD8), U(FD16) and
U(FD20) are described in Theorems 2.2, 2.3 and 3.2, when F has odd charac-
teristic. The unit groups U(FD2k) and U(FD5.2k), when characteristic of F is
2, have been studied in Theorems 4.1 and 4.2.
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