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ABSTRACT

In this article, we give the complete characterization of U(F D4), U(F Ds),
U(FDio), U(FDig) and U(F Do), where F is a finite field of character-
istic p > 0 and D, is the dihedral group of order 2n. We also find the
structure of U(FDyx) and U(F D; o1 ), when F is a finite field of charac-
teristic 2.
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1. Introduction

Let F'G denote the group algebra of a group G over a field F and let U(FG)
be the unit group of FG. If H is a normal subgroup of G, then the natural
homomorphism G — G/H can be extended to an F-algebra homomorphism
FG — F(G/H). The kernel of this homomorphism w(H), is the ideal of
FG generated by {h —1: h € H}. The ideal w(G) is called the augmentation
ideal of F'G and is also denoted by w(FG). Clearly, w(H) = w(FH)FG =
FGw(FH). We shall be writing (w(H))™ as w™(H).

Let J(FG) be the Jacobson radical of FG. For any ideal I C J(FG),
the natural homomorphism FG — FG/I induces an epimorphism U(FG) —
U(FG/I), so that U(FG)/(14+ 1) 2 U(FG/I).

Let F' be a finite field of characteristic p and let G be a finite group. An
element g € G is called p-regular if (p,0(g)) = 1. Let m be the lem of the orders
of p-regular elements of G and let 1 be the primitive mth root of unity over F.
Let T be the multiplicative group of integers ¢t modulo m such that n — 7 is
an F-automorphism of F'(n). Two p-regular elements z,y € G are F-conjugate
if y* = g~ lxg for some g € G and t € T. This is an equivalence relation and
partitions the p-regular elements of G into F-conjugacy classes. According to
Witt-Berman Theorem (Karpilovsky}, [1992, Ch. 17, Theorem 5.3), the number
of F-conjugacy classes of p-regular elements of G is equal to the number of
non-isomorphic simple F'G-modules.

Our notations are standard. For z,y € G, (v,y) = 2 'y oy and 2¥ =

y~tay. For a finite subgroup H of G, H = >, .,y h and 7,,(G) = nth term
of the lower central series of G. We shall denote by D,, the dihedral group of
order 2n. Thus D,, = (r, s|r", s%,rsrs). Also M (n, F) is the algebra of all n x n
matrices over F' and GL(n, F) is the general linear group of degree n over F.
Further, F), is the extension field of F' of degree n, F* = F\{0} and F" is the
direct summand of n copies of F. C,, is the cyclic group of order n and C¥ is
the direct product of k copies of C),. The group K4 = Cs x Cs.

The study of the unit group of a group ring has been a classical topic in the
theory of group rings. Unit groups of several finite group algebras have been
described in |Creedon| (2008), |Creedon and Gildeal (2008, 2011), (Gaohua and)|
Yanyan| (2011), Gildeal (2008, 2010a,b)), Khan| (2009), Makhijani et al.| (2014alc|
2015). U(FyDy) has been determined in Makhijani et al.| (2014c) for odd n
and U(Fy«Dy) and U (F5x Ds) in terms of split extension have been obtained by
Gildea in |Creedon and Gildeal (2011) and |Gildea) (2010b) respectively. Com-
plete characterization of U(F Dg) and U(F Ds) has been determined in

|420 Malaysian Journal of Mathematical Sciences |




| Unit Groups of Group Algebras |

land Yanyan| (2011) and Khan| (2009) respectively. The conjugacy classes in D,,
are as follows:

For odd n:

1. The identity element: {1};
2. (n —1)/2 conjugacy classes of size 2: {r*'},..., {r=(r=1/2}

3. All the reflections: {r‘s:0<i < (n—1)}.
For even n:

1. Two conjugacy classes of size 1: {1}, {r™/?};
2. n/2 — 1 conjugacy classes of size 2: {r*'}, ... {r=/2=D1;

3. The reflections fall into two conjugacy classes: {r?'s:0 < i <n/2—1}
and {r¥*ls:0<i<n/2-1}.

So the number of conjugacy classes in D,, is (n+6)/2, if n is even and (n+3)/2,
if n is odd.

Lemma 1.1. If FG is a semisimple group algebra of an abelian

group G over a field F and F contains a primitive mth root of unity, where
m = exp(G) and n = |G|, then FG = F".

Lemma 1.2. |Milies and Sehgal (2002)Let RG be a semisimple group algebra.
If G' denotes the commutator subgroup of G, then RG = RG._, ® A(G,G'),

where RGeg, >~ R(G/G") is the sum of all commutative simple components of
RG and A(G,G") is the sum of all the others.

Lemma 1.3. |Milies and Sehgal (2002) (Wedderburn-Artin)A ring R is semisim-
ple if and only if it is a direct sum of finite number of matriz algebras over
division rings.

Lemma 1.4. [Milies and Sehgal (2002) Let G be a group and let R be a com-
mutative ring. The set {~;}icr of all class sums is a basis of Z(RG), the center

of RG over R.

The paper is organized as follows. In Section 2, we give a characterization
of U(FDy). Also, we give a description of U(F Dg) and U(F D1g), if F has odd
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characteristic. In Section 3, we study U(F Dg), where F' is an arbitrary finite
field. We also study U (F Dqg), if F has odd characteristic. Finally, in Section 4,
we have investigated U(F Dyx) and U(F D5 o1 ), if F is a field of characteristic

2.

2.

Dihedral groups of orders 8, 16 and 32

In this section, we study the structure of U(F Dan) for n = 2,3 and 4.

Theorem 2.1. Let F be a finite field of characteristic p with |F| = p™ = gq.
Let Vi =1+ J(FDy) and Vo =14 w(D}).

1. If p=2, then

(a) U(FDy4)/Vh & F*;
(b) Vi is a group of order 27";

(c) Va is an abelian group of order 2*";

(d) V1/Va is a group of exponent 4 and order 2°7;
(e) U(FDy) is a nilpotent group of class 2.

2. If p>2, then U(FDy) 2 GL(2,F) x (F*)*.

Proof.

422

1. (a) Let p=2. The commutator subgroup of Dy is D} = {1,7?}
and D4/DZL = K4. Thus F(D4/Da) = FD4/(.U(DZL) = FK4 and
dimp(w(D})) = 4. Since w(D}) is nilpotent, by (Lam, 1991, Lemma
4.11), w(D}) C J(FD4). Now, J(FK4) = J(FD,)/w(D}). Let
K, ={1,a,b,ab}. Then J(FK4) = a1(1+ab) +az(1+b) +as(l+
a); ai,az,a3 € F, dimp(J(FKy)) = 3 and J*(FK,) = 0. Thus,
1. Hence, FD4/J(FDy4) = F and

U(FD4)/Vi = U(FD4/J(FDy)) & F*.
Since Vi = 1+ J(FDy) and dimp(J(FDy)) = 7, [Vi| = |J(FD4)| =
2™,
Since Vo = 1+ w(D}) and w?(D}) = 0, V5 = 1. Also, |Va] =
w(Dy)] = 2"

Let v = v;V, € V1 /V, where vy = 1+ 2 € V4, where © € J(FDy).
As JY(FD,) Cw(D}), so vi =1+ 2* € Va. Hence V4 /Vs is a group
of exponent 4. Further, |V} /V3| = 23"
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(e) Since w(D}) is nilpotent, 1 + w(D}) C U(FDy) and U(FDy4)/(1 +

w(D})) 2 U(FK,) is an abelian group. So U(FD,4) C 1+ w(Dj}).

Further, w(D}) C Z(FDy), thus v3(U(FDy4)) = 1 and U(FDy,) is
nilpotent of class 2.

2. Sincep > 2, FD4 is semisimple. Hence, by Lemma L FDy = M(ny,D1)®
M(ng2,D2) @ -+ ® M(ng, D), where D;s are finite dimensional division
algebras over F. Since F is finite, Djs are finite fields and at least
one ng > 1. As dimp Z(FDy4) = 5, np > 2 is impossible. Therefore
np < 2 for all k € {1,2,...,t}. Also F(D,/D}) = FK; = F* and
FD, = M(2,F)® F*, by Lemmas [1.1] and

Theorem 2.2. Let F be a finite field of characteristic p > 2 with |F| = p™ = q.
Then

GL(2,F)* x Cy_,, if g ==+1 mod 8 ;
GL(2,F) x GL(2, Fy) x C* if ¢ = +3 mod 8.

q—1

U(FDg) = {

Proof. Since p > 2, F Dg is semisimple and by Lemma | FDs =2 M(ny,D1)®
M(ng, D2)®---®M (nt, D), where D;’s are finite dimensional division algebras
over F. Since F' is finite, D;’s are finite fields and at least one n; > 1. Clearly
ni < 3 for all k. Now F(Dg/D}) = FK4 = F*. Further, since dimp Z(FDg) =
7, we have the following possibilities:

FDg= M(2,F)® M(2,F)® M(2,F)® F*

or
~ M(2,F)e M(2,F) @ F*

or
~ M(2,F3) @ F*.

The conjugacy classes of Dg are C; = {1}, Co = {r}, C3 = {r,r } Cy =
{r?,rb}, C5={T o}, Cﬁ—{TS’/’ 5,7%8,17 S} andC7—{s r2s,rts,r s} and
by Lemma [L.4, Z(FDg) = FC, + FCy + FCs + FCy + FCs + FCg + FCr.

If p = +1 mod 8, then p™ = %1 mod 8 for all n. So, CAip = CAZ for all,
1<i<7 Thus 2?" =z, for all z € Z(FDg) and

FDs=M(2,F)® M(2,F)® M(2,F)® F*.
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If p = 43 mod 8 and n is even, then p™ = 1 mod 8. Again, @p = C; for
all, 1 <¢ < 7and

FDg= M(2,F)® M(2,F)® M(2,F)® F*.

If p = +3 mod 8 and n is odd, then " =1 mod 8. So, C;’ = C; for all
1 <i < 7. Then, in this case, P = z, for any = € Z(F Dg) and

FDg = M(2,F)® M(2,F) @ F*.

Hence
pp.~ [MEF 0P, if g =+1 mod 8 ;
*TIMEF)e M2, F) @ FY, ifg=4+3mod S .

O

Theorem 2.3. Let F be a finite field of characteristic p > 2 with |F| = p™ = q.
Then

GL(2,F)" x C§_,, if ¢ = £1 mod 16;
U(FDig) = { GL(2,F) x GL(2, F3) x GL(2, F4) x Cy_y, if ¢ =+3 or £5 mod 16;
GL(2,F)? x GL(2, F2)? x Cy 4, if ¢ = £7 mod 16.

Proof. As, F(Dy6/D}g) = FK4 = F*, we have
FDyg = F' & (@f_l M(n;, Dz))

where n; > 2 and D;’s are finite dimensional division algebras over fields which
are extensions of F'. Hence,

Z(FDy) = F*® (@j.;l Di).

Since dimp Z(FDyg) = 11, Y28 | [D; : F] = 1.

The conjugacy classes of Dig are C; = {1}, Co = {r®}, C3 = {r*'}, C4
{Tj:Q}, C5 = {Tis}i CG = {Ti4}7 C7 = {Tif)}; CS = {Tiﬁ}a CQ = {Ti7}7 CIO =

{s,72s,..., 718} and Cy1 = {rs,r®s,...,r'%s}.

For any [ € N, it is easy to see that 27 =z foralz e Z(F D) if and only
if CAZ‘-ZL =C, forallic {1,2,...,11}. This is possible if and only if r? =7 or
r~1. This is equivalent to 16/(¢' — 1) or 16|(¢" + 1).
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Now for each i € {1,2,...,k}, let D = (y;). Then, 29 =z forall z €
Z(FDqg) if and only if yfl = y;. This is possible if and only if [D; : F]|l for
alli=1,... k. Thus the least number ¢ such that 16|(q* — 1) or 16|(¢* + 1) is
t=l.emA[D;: F]:1<i<k}. Now if,

1. ¢ = +1 mod 16, then ¢t = 1;
2. ¢ =43 or 45 mod 16, then ¢t = 4;
3. ¢ = +£7 mod 16, then t = 2.

Clearly m = 16. Let a= number of simple components in the Wedderburn
decomposition of F'Dqg. Then

1. ¢ =1 mod 16.
T = {1} mod 16 and hence C;, i € {1,2,...,11} are the p-regular F-
conjugacy classes. Hence a = 11.

2. ¢ = —1 mod 16.
T = {1,—1} mod 16 and hence C;, i € {1,2,...,11} are the p-regular
F-conjugacy classes. Hence a = 11.

3. ¢g =3 or —5 mod 16.
T ={1,3,9,11} mod 16. Since ¥ = =7, 7!t =775 and (r?)3 = 15, the
p-regular F-conjugacy classes are {1}, {r*1 r®3 %5 p£7) [pE2 p3261
{r=4} {r®Y, {rs,r3s,...,71%s} and {s,7?s,...,r'*s}. Hence a = T.

4. ¢ =5 or —3 mod 16.
T = {1,5,9,13} mod 16. Since r° = r=7, r!3 = r=3 also (r?)% = r=°, the
p-regular F-conjugacy classes are {1}, {r¥1 r®3 &5 p£7) [pE2 p3261
{r=4} {r®Y, {rs,r3s,...,71%s} and {s,7?s,...,r'*s}. Hence a = T.

5. ¢ =7 mod 16
T = {1,7} mod 16. Since (r*)7 = r°, the p-regular F-conjugacy classes
are given by {1}, {r*l,rE7}, {r¥2}, {rE3 Y {rF), {#*6}, {r8),
{rs,r3s,...,r'%s} and {s,r%s,...,r's}. Hence a = 9.

6. ¢ = —7 mod 16.

T = {1,9} mod 16. Since r® = r=7, (r*)? = 775, the p-regular F-
conjugacy classes are {1}, {r=1 r*7}, {rE2} {r®3 ¢35} [prt4} {rF6},
{r®}, {rs,r®s,...,r%s} and {s,r%s,...,r'*s}. Hence a = 9.
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Now, we have the following possibilities for [D; : F|¥_, depending on ¢:

1. ¢ =41 mod 16, then [D; : F]¥_, = (1,1,1,1,1,1,1).
2. ¢ =43 or 5 mod 16, then [D; : F]F_, = (1,2,4).
3. ¢ = +7 mod 16, then [D; : F]¥_, = (1,1,1,2,2).

Due to dimension constraints, n; = 2 for all 1 <14 < k. Hence

M(2,F)" @ F4, if ¢ = +1 mod 16;
FDig 2 S M2,F)® M(2,Fy) ® M(2,Fy) ® F*, if ¢ =43 or 5 mod 16;
M(2,F)?® M(2,F)? @ F4, if ¢ = 7 mod 16.

3. Dihedral groups of orders 20 and 40

In this section, we find the structure of U(F Ds,), n = 2,4.

Theorem 3.1. Let F be a finite field of characteristic p with |F| = q = p".
Let Vi =1+ J(FDso) and let Vo =1+ w(H), where H = {1,75}. Then

1. If p=2, then
(a)
GL(2,F)? x Con_y, ifn is odd;

U(FDy)/Vh =
(FD1o)/V1 {GL(2,F2) x Con_1, ifn is even.

(b) Vi is a group of exponent 4, order 211" and nilpotent of class at most
3;
(c) Vs is an abelian group of order 2'°";
(d) V1 /V45 is a group of exponent 2 and order 2.
2. If p=2>5, then

(a) U(FD1g)/Vi = Cu_y;

(b) Vi is a nilpotent group of class 4 and order 5™,
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3. If p{|D1ol, then

Proof.

GL(2,F)* x C;_y, if ¢==%1 mod 10;

U(F D) =
(FD1o) {GL(Q,F2)2 x CA_y, if g = +3 mod 10.

1. (a) Let p = 2. Then H = {1,775} is a normal subgroup of
D10 and Dlo/H = D5. Thus F(Dlo/H) = FDlo/w(H) = FD5
and dimp(w(H)) = 10. Since w(H) is a nilpotent ideal, w(H) C
J(FDyp). Now, J(FD5) = J(FDiy)/w(H). By (Makhijani et al.,
2014bl, Theorem 3.1), J(FD3) = FDj; and dimp(J(FDs)) = 1. So,
dlmF(J(FDlo)) =11 and dlmF(FDlo/J(FDlo)) =9.

Now, the 2-regular elements in Dy are 1, r2, r=2, % and r—%.
Hence m = 5. Let a be the number of simple components in the

Wedderburn decomposition of F'Dqg.
i. If n =0 mod 4, then ¢ = 1 mod 5.
T = {1} mod 5 and {1}, {r*?}, {r**} are the 2-regular F-
conjugacy classes. Hence a = 3.
ii. If n =2 mod 4, then ¢ = —1 mod 5.
T = {1,4} mod 5 and {1}, {r*?}, {r**} are the 2-regular F-
conjugacy classes. Hence a = 3.
iii. If n =1 mod 2, then ¢ = +2 mod 5.
T ={1,2,3,4} mod 5 and {1}, {r*2,r**} are the 2-regular F-
conjugacy classes. Hence a = 2.

Hence,

FoM(2,F)?, if ¢g=41mod 5;

FDqy/J(FDyp) =
10/ ( 10) {F @ M(Z,Fg), if ¢ = £2 mod 5.

Hence V; is a group of exponent 4 which is nilpotent of class at
most 3. Further, since Vi = 1+ J(FD1p), |Vi| = |J(FDyg)| = 21"
Since Vo = 1 + w(H) and w?(H) = 0, V4 = 1. Hence V3 is abelian.
Further, |Va| = |w(H)| = 210"

Let v = v1Va € Vi /Va where vy € V5. For « € J(FDqg), let v; =
1+ z so that v% =1+ 22 € V5. Hence V1/Va is a group of exponent
2. Further, |V1/V5| = 2™.

Since JQ(FD5) = 0, SO JQ(FDH)) - UJ(H) and J4(FD10) = 0.

Let p = 5 and let K = {1,7%2 7*4}. Then K is a normal sub-
group of Dyg. By (Passman| [1977, Lemma 1.17 and Theorem 2.7),
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J(FDy) = w(K). Thus FDyy/J(FDy) = FK4 = F* by Lemma
[L.1 and dimp(J(FDg)) = 16. Hence,

U(FDl(])/Vl = U(FDl()/J(FDl(])) = (F*)4

(b) J3(FDyp) = w®(K) = 0. Hence V; is nilpotent of class at most 4.
Asr?+4 € J(FDyy), so 4s+18s, dr+13, drs+r9s € J(FDyg). Thus
r=r2 y=1+4s+71%s, 2 =1+4r+r>and w = 1 +4rs+1r%s € V;.
Now,

A= (z,y)=3+4r +r* +3r° + (1 + 272 + 74 + 3r% + 3r%)s,
B=(2,A) =2+ 4+ +r5 4+ 38 + 7% + 3+ 4r + 42 + 203
+ 25+ 4rC 40T 4 8 4 4r0)s,
C=(w,B)=4+3r+2r% +3r% +r* + 305 + 3r% 4 217
4+ (4r +2r% +4r® 4300 40T 4308 4 r%)s £ 1.
Hence V; is nilpotent of class 4. In the above expression,
y =44+t 405 (4 + 42 40 4085,
AT =340 43 4+ (44 307 At 4 200 4 20%)s,
2l =24+ 22 4+ 4r* 4 275 + 200 + 307 48 4 49,
Bt =2+2r+3r% + 2% + 0% + 27 + 4r®
+2r% + (L dr 4+ 3 40 405 + 305 + 407 4+ 208 209,
wt =24+4r% + (3r +2r7)s.
Further, since V; = 1 + J(FDuo), |Vi| = |J(FDio)| = 5.
3. As F(Dyo/D}y) & FK4 = F*, so by using the Wedderburn-Artin Theo-
rem and Lemma [T.2] we have
FDy = F*® <€9§_1 M(nivDi)>v

where n; > 2 and D;’s are finite fields. Therefore,

Z(FDyo) = F* @ (eaf_l Di).

Since, dimp Z(FDyg) = 8, ¢ [D; : F] = 4.

The conjugacy classes of Dy are C; = {1}, Co = {r°}, C3 = {r¥!},
Cy = {r*2}, C5 = {r3}, Cs = {r**}, C; = {s,7%s,...,7%s} and Cg =
{rs,m3s,...,19s}.
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For any [ € N, it is easy to see that 2¢' = x for all x € Z(FDyyp) if and
only if (:’\fl = é\l for all 1 <4 < 8. This is possible, if and only if rd =y
or r~! or equivalently 10|(¢' — 1) or 10|(¢’ + 1).

Now for each i, 1 < ¢ < k, let D = (y;). Then, 29 =z for all 2 €
Z(FDyy) if and only if yfl = y;. This is possible if and only if [D; : F]|I
for all i € {1,...,k}. Thus the least number ¢ such that 10|(¢* — 1) or
10/(¢" + 1) ist =lemf[D;: F]: 1 <i<k}.

If

(a) ¢ =21 mod 10, then t = 1.
(b) ¢ = £3 mod 10, then ¢t = 2.

We have m = 10. Let a— number of simple components in the Wedder-
burn decomposition of F'D1g. Then

(a) ¢ =1 mod 10.
T = {1} mod 10, so C;,1 < i < 8 are the p-regular F-conjugacy
classes. Hence a = 8.

(b) ¢ = —1 mod 10.
T ={1,—1} mod 10, so C;,1 < i < 8 are the p-regular F-conjugacy
classes. Hence a = 8.

(¢) ¢ =3 mod 10.
T = {1,3,7,9} mod 10. Since 7" =773, 7% = r~! and (r?)% = r=4,
the p-regular F-conjugacy classes are {1}, {r*1 r®3} [p*2 p£i1
{r°}, {s,7%s,...,78s} and {rs,r3s,...,r%s}. Hence a = 6.

Now, we have the following possibilities for [D; : F]¥_, depending on g,

(a) ¢ =+1mod 10, then [D; : F]¥_, = (1,1,1,1).

) ) )

(b) ¢ =43 mod 10, then [D; : F]F_, = (2,2).

Due to dimension constraints, n; > 2 is impossible for any 1 < i < k.
Thusn; =2 forall 1 <7<k and

FD. M2,F)* @ F*, if ¢=41 mod 10;
YT M@ B2 e FY, if g= 43 mod 10.

O

Theorem 3.2. Let F be a finite field of characteristic p with |F| = ¢ = p™.
Let Vl =1+ J(FDgo)
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1. If p=5, then

(a) U(FDa)/Vi = GL(2, F) x Chr _,;
(b) V1 is a nilpotent group of class 4 and order 532".

2. prf ‘Dgo‘, then

GL(2,F)? x Cy_, if ¢ = +1 mod
205
2 4 ) —
U(FDao) = GL(2,F) x GL(2, F»)? x GL(2,F,) x C3_,, ?;Zd:%?:-g or £7
GL(2,F)° x GL(2, F2)* x Cyf 4, if ¢ = £9 mod
20;

Proof. 1. (a) Let p = 5 and let H = {1,r* 7#8}. Then H is a nor-
mal subgroup of Dyy. Again by (Passmanl (1977, Lemma 1.17 and
Theorem 27), J(FDQ()) = w(H) Thus FDQO/J(FDQQ) = FD4 =
M(2,F) @ F*, by Theorem [2.1]and dimp J(F Dag) = 32. Hence,

U(FDag)/Vi = U(FDao/J(FDso)) = GL(2, F) x (F*).
(b) J?(FDgg) = w®(H) = 0. Hence V; is nilpotent of class at most 4.
Ash=r*~1and k=s(r* —1) =r'%s — s € J(FDy), so z = r*
and y =1 — s+ r'%s € V;. Then,

A= (z,y) =3+4" +r3+ 32+ (1427 + 0% + 372 4+ 3r1%)s,
B = (z,A) =14 (4r* + 38 + 2712 4 165,
C=(z,B) =1+ 2+2r" +2r% + 27" 4 2r'%)s #£ 1.

Hence V; is nilpotent of class 4. In the above expression,

y T = a4t P (At e 1),
AN = 34308 412 4 410 (44 300 4 48 4 212 4 2010,
Bt =1+ (r* +2r® + 302 + 4105,

Further, since Vi =14+ J(FDQ()), |Va| = |J(FD20)| = 532".
2. Now F(Dgy/Dby) = FK, = F*. Hence

FDy = F* @ (69?_1 M(ni;Di))v
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where n; > 2 and D,’s are finite fields. Therefore,
Z(FDy) = F* o (@f_l Di>.

Since, dimg Z(FDag) =13, YF_,[D; : F] = 9.

The conjugacy classes of Dy are given by C; = {1}, Co = {r'%}, C3 =
{Til}v Cs = {riQ}a Cs = {riB}a Ce = {ri4}) Cr = {,],.:I:S}, Cs = {TiG}v
Co = {rt7}, Cro = {r*8}, C11 = {r™°}, C1o = {s,7%s,...,78s} and
Ci3 = {rs,r3s,...,r%s}.

Now for any [ € N, we have 29 =g for all z € Z(FDyp) if and only if
(?Z‘-Il = (?Z for all 1 <14 < 13. This is possible if and only if rd = or r1
or equivalently 20|(g' — 1) or 20|(¢' + 1).

For each i, 1 <14 <k, let Df = (y;). Then 24 =z forall z € Z(F Dqg)
if and only if yfl = y;. This is possible if and only if [D; : F]|l for all
i € {1,...,k}. Thus the least number ¢ such that 20|(¢* —1) or 20|(q* +1)
ist=lemd[D;: F]:1<i<k}

If

(a) ¢ = £1 mod 20, then ¢ = 1.
(b) ¢ =43 or £7 mod 20, then ¢t = 4.
(¢) ¢ ==+9 mod 20, then ¢t = 2.

Clearly m = 20. Let a= number of simple components in the Wedderburn
decomposition of F'Dsg. Then

(a) ¢ =1 mod 20.
T = {1} mod 20 and hence C;,1 < i < 13 are the p-regular F-
conjugacy classes. Hence a = 13.

(b) ¢ = —1 mod 20.
T = {1,—1} mod 20 and hence C;,1 < ¢ < 13 are the p-regular
F-conjugacy classes. Hence a = 13.

(¢) ¢ =3 or 7 mod 20.
T = {1,3,7,9} mod 20. Since (r?)3 = r% and (r*)” = 7%, the
p-regular F-conjugacy classes are {1}, {r®! &3 p£7 91 %51
{rt0}) {r®2 pE6) {pF4 pB8Y s, 025, r18s), {rs,r3s, ... 195
Hence a = 8.

(d) ¢ =9 mod 20.
T = {1,9} mod 20. Since (r*)? = r7, the p-regular F-conjugacy
classes are {1}, {r*!, v}, {r®3 +27} {r+2}, {r+4}, {r+5}, {r*6},
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{r®8), {r1%)) {s,r%s,...,7'8s} and {rs,r3s,...,r%s}. Hence a =
11

(e) ¢ =—9 mod 20.
T = {1,11} mod 20. Since r!! = r=2 and (r3)!! = r=7, the p-
regular F-conjugacy classes are given by {1}, {r*! r*}, {r*?}
[P, 15T, 8, {55}, (46, (1#5), {719), {515, .. 7155} and
{rs,r3s,...,r1%}. Hence a = 11.

(f) ¢ =—3 or =7 mod 20.
T = {1,9,13,17} mod 20. Since 713 = =7 717 = 73 (#2)17 =
r=% and (r*)!” = 8, the p- regular F-conjugacy classes are given
by {1}’ {Tﬂ:17ri37ri77rﬁ:9}’ {TiQ,Ti6}, {Tﬂ:47rﬂ:8}’ {,r:t5}’ {7,,10}’
{s,72s,...,718s} and {rs,r3s,...,r1%}. Hence a = 8.

Now, we have the following possibilities for [D; : F]i?:1 depending on g,

) ) 9 ) ) ) ) 9

(b) ¢ =43 or £7 mod 20, then [D; : F]¥_, = (1,2,2,4).

) ) )

(¢) ¢==+9 mod 20, then [D; : F]F_, = (1,1,1,1,1,2,2).

) ) 9 ) ) )

(a) ¢ = +1 mod 20, then [D; : FI¥_, = (1,1,1,1,1,1,1,1,1).

Due to dimension constraints, n; > 2 is impossible for any 1 < i < k.
Thus n; =2 for all 1 <7<k and

M(2,F)° & F*, if ¢ = +£1 mod 20;
FDyy =< M(2,F)®d M(2,F»)?® M(2,Fy) ® F*, if ¢= =43 or 7 mod 20;
M(2,F)> & M(2, F2)? @ F*, if ¢ = 49 mod 20.
O

4. Finite fields of characteristic 2

In this section, we find the structure of U(F Dyx) and U(F Dj o1 ) over finite
fields of characteristic 2.

Lemma 4.1. Let F be a finite field of characteristic 2. Then dimp(J(FDax)) =
kL 1 for all k =2,3,. ...

Proof. If k = 2, then by Theorem dimp(J(FD4)) = 7. Suppose that
dimp(J(FDyi1)) = 28 — 1. It H = (r2"") = {1,72" '}, then H is normal
in Dor and F(Dox/H) = FDox/w(H) & FDor-1. So dimp(w(H)) = 2*.
Now w(H) is nilpotent and so, w(H) C J(FDyx). Therefore J(FDgr—1) =
J(FDy)/w(H) and dimp(J(FDgr)) = 28 — 1 42k = 2k+1 1, O
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Theorem 4.1. Let F be a finite field of characteristic 2 with 2™ elements. Let
Vi=14J(FDy) and Vo =14+ w(H), where H = <7‘2k71>. Then

1. U(FDy)/Vi = F

2. Vi /Va is a group of order 22° =1,

Proof. 1. Let H = {1,r2"'}. Then H is normal subgroup of Dy:. So
DQk/H = ng—l. Thus FDQk/U}(H) = FDQk—l and dlrnp(w(H)) = 2k.
Now w(H) is nilpotent and so, w(H) C J(FDyx). Thus J(FDgi-1) =
J(FDgr)/w(H) and by Lemma (4.1} dimp(J(FDg)) = 21 — 1. So,
dlmF(FDQk/J(FDQk)) =1, FDQk/J(FDQk) =~ F and U(FDQk)/Vl =
U(FDgi/J(FDy)) = F*.

2. Obviously, [Vi| = [J(FDy)| = 2" =1 and |Vo| = |w(H)| = 22",
Hence |V V| = 22~

O

Lemma 4.2. Let F be a finite field of characteristic 2. Then dimp(J(FDsox)) =
5.2k1 — 9, for all k =0,1,2,....

Proof. If k = 0, then by (Makhijani et al.,2014b, Theorem 3.1), dimg(J(FDs5)) =
1. Suppose that dimp(J(FDsqi-1)) = 528 — 9 and let H = (r52" ") =
{1,r52"7"}. Then H is normal in D o« and hence F(Ds.or/H) 2 F D5 o Jw(H)
FDsor-1. So dimp(w(H)) = 5.2F. As w(H) is nilpotent, w(H) C J(F D5 ).
Therefore J(FDs or—1) & J(FDs o) /w(H) and dimp(J(FDs o)) = 5.2F — 9+
5.2F = 5.2k — 9. O

Theorem 4.2. Let F be a finite field of characteristic 2 with 2™ elements. Let
Vi =1+ J(FDjso) and Vo = 1 + w(H), where H = Z(Ds o1) = {1,752 "}
Then

GL(2,F) x GL(2,F) x Cyn_y, if n is odd;

U(FD =
(F'Ds5 9x)/ VA {GL(Z,FQ) X Can_1, if n is even.

2. V1 /Vs is a group of order 2(5.25~9)n
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Proof. Let H = {1,7"5'2]“71}. Then H is a normal subgroup of Djor and
D5'2k/H = D5.2k—1. Thus FD5.21¢,/0J(H) = FD5421«—1 and dlmF(w(H))
5.2%. Since w(H) is nilpotent, w(H) C J(FDsor). Now, J(FDsox1)
J(FDs.:)/w(H). By Lemma dimp(J(FDjor)) = 5.251 — 9. Hence
dimp(FDs ox /J(FDs 51)) = 9.

I

. k ok k1
Now, the 2-regular elements in Ds 5 are 1, r2°, r=2°, 12 and r

Hence m = 5. Let a be the number of simple components in the Wedderburn
decomposition of F'Dg ok.

_ok+1

1. If n =0 mod 4, then ¢ =1 mod 5.
T = {1} mod 5 and {1}, {r*2"}, {r£2"""} are the 2-regular F-conjugacy
classes. Hence a = 3.

2. If n =2 mod 4, then ¢ = —1 mod 5.
T = {1,4} mod 5 and {1}, {rizk 1, {rﬁkH} are the 2-regular F-conjugacy
classes. Hence a = 3.

3. If n =1 mod 2, then ¢ = £2 mod 5.

T =1{1,2,3,4} mod 5 and {1}, {rﬂk?ri
classes. Thus a = 2.

2k+1} are the 2-regular F'-conjugacy

Hence,

Fe M(2,F)?, if g=+1mod 5;
FDso/J(FDs o) = " (2, F)%, tg mod o;

F& M(2,F,), ifg=42mod?5.
Since Vi = 14+ J(F D5 51) and Vo = 14w(H), [Vi| = |J(FDj 41 )| = 26:2"7'=9)n
and |Va| = |w(H)| = 2(5:2")n Hence Vi /Va| = o(5:25~9)n O

5. Conclusion

For a finite field F', we have given the structures of U(F D,4) and U(F D)
in Theorems and , whereas the structure of U(FDg), U(FDjg) and
U(F Dag) are described in Theorems and when F' has odd charac-
teristic. The unit groups U(F Dqr) and U(F D5 or ), when characteristic of F is
2, have been studied in Theorems and
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