Journal homepage: http://einspem.upm.edu.my/journal

Unit Groups of Group Algebras of Certain Dihedral Groups

Sahai, M. ${ }^{*}$ and Ansari, S. F.
Department of Mathematics and Astronomy
University of Lucknow
Lucknow, U.P. 226007, India
E-mail: meena_sahai@hotmail.com
* Corresponding author
Received: 11 December 2019
Accepted: 7 July 2020

Abstract

In this article, we give the complete characterization of $U\left(F D_{4}\right), U\left(F D_{8}\right)$, $U\left(F D_{10}\right), U\left(F D_{16}\right)$ and $U\left(F D_{20}\right)$, where F is a finite field of characteristic $p>0$ and D_{n} is the dihedral group of order $2 n$. We also find the structure of $U\left(F D_{2^{k}}\right)$ and $U\left(F D_{5.2^{k}}\right)$, when F is a finite field of characteristic 2 .

Keywords: Dihedral group, group algebra, unit group.

1. Introduction

Let $F G$ denote the group algebra of a group G over a field F and let $U(F G)$ be the unit group of $F G$. If H is a normal subgroup of G, then the natural homomorphism $G \rightarrow G / H$ can be extended to an F-algebra homomorphism $F G \rightarrow F(G / H)$. The kernel of this homomorphism $\omega(H)$, is the ideal of $F G$ generated by $\{h-1: h \in H\}$. The ideal $\omega(G)$ is called the augmentation ideal of $F G$ and is also denoted by $\omega(F G)$. Clearly, $\omega(H)=\omega(F H) F G=$ $F G \omega(F H)$. We shall be writing $(\omega(H))^{n}$ as $\omega^{n}(H)$.

Let $J(F G)$ be the Jacobson radical of $F G$. For any ideal $I \subseteq J(F G)$, the natural homomorphism $F G \rightarrow F G / I$ induces an epimorphism $U(F G) \rightarrow$ $U(F G / I)$, so that $U(F G) /(1+I) \cong U(F G / I)$.

Let F be a finite field of characteristic p and let G be a finite group. An element $g \in G$ is called p-regular if $(p, o(g))=1$. Let m be the lcm of the orders of p-regular elements of G and let η be the primitive m th root of unity over F. Let T be the multiplicative group of integers t modulo m such that $\eta \rightarrow \eta^{t}$ is an F-automorphism of $F(\eta)$. Two p-regular elements $x, y \in G$ are F-conjugate if $y^{t}=g^{-1} x g$ for some $g \in G$ and $t \in T$. This is an equivalence relation and partitions the p-regular elements of G into F-conjugacy classes. According to Witt-Berman Theorem (Karpilovsky, 1992, Ch. 17, Theorem 5.3), the number of F-conjugacy classes of p-regular elements of G is equal to the number of non-isomorphic simple $F G$-modules.

Our notations are standard. For $x, y \in G,(x, y)=x^{-1} y^{-1} x y$ and $x^{y}=$ $y^{-1} x y$. For a finite subgroup H of $G, \hat{H}=\sum_{h \in H} h$ and $\gamma_{n}(G)=n t h$ term of the lower central series of G. We shall denote by D_{n} the dihedral group of order $2 n$. Thus $D_{n}=\left\langle r, s \mid r^{n}, s^{2}, r s r s\right\rangle$. Also $M(n, F)$ is the algebra of all $n \times n$ matrices over F and $G L(n, F)$ is the general linear group of degree n over F. Further, F_{n} is the extension field of F of degree $n, F^{*}=F \backslash\{0\}$ and F^{n} is the direct summand of n copies of $F . C_{n}$ is the cyclic group of order n and C_{n}^{k} is the direct product of k copies of C_{n}. The group $K_{4}=C_{2} \times C_{2}$.

The study of the unit group of a group ring has been a classical topic in the theory of group rings. Unit groups of several finite group algebras have been described in Creedon (2008), Creedon and Gildea (2008, 2011), Gaohua and Yanyan (2011), Gildea (2008, 2010a b), |Khan (2009), Makhijani et al. (2014a |c. 2015). $U\left(F_{2^{k}} D_{n}\right)$ has been determined in Makhijani et al. (2014c) for odd n and $U\left(F_{2^{k}} D_{4}\right)$ and $U\left(F_{5^{k}} D_{5}\right)$ in terms of split extension have been obtained by Gildea in Creedon and Gildea (2011) and Gildea (2010b) respectively. Complete characterization of $U\left(F D_{6}\right)$ and $U\left(F \bar{D}_{5}\right)$ has been determined in Gaohua
and Yanyan (2011) and Khan (2009) respectively. The conjugacy classes in D_{n} are as follows:

For odd n :

1. The identity element: $\{1\}$;
2. $(n-1) / 2$ conjugacy classes of size $2:\left\{r^{ \pm 1}\right\}, \ldots,\left\{r^{ \pm(n-1) / 2}\right\}$;
3. All the reflections: $\left\{r^{i} s: 0 \leq i \leq(n-1)\right\}$.

For even n :

1. Two conjugacy classes of size $1:\{1\},\left\{r^{n / 2}\right\}$;
2. $n / 2-1$ conjugacy classes of size $2:\left\{r^{ \pm 1}\right\}, \ldots,\left\{r^{ \pm(n / 2-1)}\right\}$;
3. The reflections fall into two conjugacy classes: $\left\{r^{2 i} s: 0 \leq i \leq n / 2-1\right\}$ and $\left\{r^{2 i+1} s: 0 \leq i \leq n / 2-1\right\}$.

So the number of conjugacy classes in D_{n} is $(n+6) / 2$, if n is even and $(n+3) / 2$, if n is odd.

Lemma 1.1. Creedon (2008)If $F G$ is a semisimple group algebra of an abelian group G over a field F and F contains a primitive mth root of unity, where $m=\exp (G)$ and $n=|G|$, then $F G \cong F^{n}$.

Lemma 1.2. Milies and Sehgal (2002)Let $R G$ be a semisimple group algebra. If G^{\prime} denotes the commutator subgroup of G, then $R G=R G_{e_{G^{\prime}}} \oplus \Delta\left(G, G^{\prime}\right)$, where $R G_{e_{q^{\prime}}} \cong R\left(G / G^{\prime}\right)$ is the sum of all commutative simple components of $R G$ and $\Delta\left(G, G^{\prime}\right)$ is the sum of all the others.

Lemma 1.3. Milies and Sehgal (2002)(Wedderburn-Artin) A ring R is semisimple if and only if it is a direct sum of finite number of matrix algebras over division rings.

Lemma 1.4. Milies and Sehgal (2002) Let G be a group and let R be a commutative ring. The set $\left\{\gamma_{i}\right\}_{i \in I}$ of all class sums is a basis of $Z(R G)$, the center of $R G$ over R.

The paper is organized as follows. In Section 2, we give a characterization of $U\left(F D_{4}\right)$. Also, we give a description of $U\left(F D_{8}\right)$ and $U\left(F D_{16}\right)$, if F has odd
characteristic. In Section 3, we study $U\left(F D_{10}\right)$, where F is an arbitrary finite field. We also study $U\left(F D_{20}\right)$, if F has odd characteristic. Finally, in Section 4, we have investigated $U\left(F D_{2^{k}}\right)$ and $U\left(F D_{5.2^{k}}\right)$, if F is a field of characteristic 2.

2. Dihedral groups of orders 8,16 and 32

In this section, we study the structure of $U\left(F D_{2^{n}}\right)$ for $n=2,3$ and 4 .
Theorem 2.1. Let F be a finite field of characteristic p with $|F|=p^{n}=q$. Let $V_{1}=1+J\left(F D_{4}\right)$ and $V_{2}=1+\omega\left(D_{4}^{\prime}\right)$.

1. If $p=2$, then
(a) $U\left(F D_{4}\right) / V_{1} \cong F^{*}$;
(b) V_{1} is a group of order $2^{7 n}$;
(c) V_{2} is an abelian group of order $2^{4 n}$;
(d) V_{1} / V_{2} is a group of exponent 4 and order $2^{3 n}$;
(e) $U\left(F D_{4}\right)$ is a nilpotent group of class 2 .
2. If $p>2$, then $U\left(F D_{4}\right) \cong G L(2, F) \times\left(F^{*}\right)^{4}$.

Proof. 1. (a) Let $p=2$. The commutator subgroup of D_{4} is $D_{4}^{\prime}=\left\{1, r^{2}\right\}$ and $D_{4} / D_{4}^{\prime} \cong K_{4}$. Thus $F\left(D_{4} / D_{4}^{\prime}\right) \cong F D_{4} / \omega\left(D_{4}^{\prime}\right) \cong F K_{4}$ and $\operatorname{dim}_{F}\left(\omega\left(D_{4}^{\prime}\right)\right)=4$. Since $\omega\left(D_{4}^{\prime}\right)$ is nilpotent, by (Lam 1991, Lemma 4.11), $\omega\left(D_{4}^{\prime}\right) \subseteq J\left(F D_{4}\right)$. Now, $J\left(F K_{4}\right) \cong J\left(F D_{4}\right) / \omega\left(D_{4}^{\prime}\right)$. Let $K_{4}=\{1, a, b, a b\}$. Then $J\left(F K_{4}\right)=\alpha_{1}(1+a b)+\alpha_{2}(1+b)+\alpha_{3}(1+$ a); $\alpha_{1}, \alpha_{2}, \alpha_{3} \in F, \operatorname{dim}_{F}\left(J\left(F K_{4}\right)\right)=3$ and $J^{4}\left(F K_{4}\right)=0$. Thus, $\operatorname{dim}_{F}\left(J\left(F D_{4}\right)\right)=7, J^{4}\left(F D_{4}\right) \subseteq \omega\left(D_{4}^{\prime}\right)$ and $\operatorname{dim}_{F}\left(F D_{4} / J\left(F D_{4}\right)\right)=$ 1. Hence, $F D_{4} / J\left(F D_{4}\right) \cong F$ and

$$
U\left(F D_{4}\right) / V_{1} \cong U\left(F D_{4} / J\left(F D_{4}\right)\right) \cong F^{*}
$$

(b) Since $V_{1}=1+J\left(F D_{4}\right)$ and $\operatorname{dim}_{F}\left(J\left(F D_{4}\right)\right)=7,\left|V_{1}\right|=\left|J\left(F D_{4}\right)\right|=$ $2^{7 n}$.
(c) Since $V_{2}=1+\omega\left(D_{4}^{\prime}\right)$ and $\omega^{2}\left(D_{4}^{\prime}\right)=0, V_{2}^{\prime}=1$. Also, $\left|V_{2}\right|=$ $\left|\omega\left(D_{4}^{\prime}\right)\right|=2^{4 n}$.
(d) Let $v=v_{1} V_{2} \in V_{1} / V_{2}$ where $v_{1}=1+x \in V_{1}$, where $x \in J\left(F D_{4}\right)$. As $J^{4}\left(F D_{4}\right) \subseteq \omega\left(D_{4}^{\prime}\right)$, so $v_{1}^{4}=1+x^{4} \in V_{2}$. Hence V_{1} / V_{2} is a group of exponent 4. Further, $\left|V_{1} / V_{2}\right|=2^{3 n}$.
(e) Since $\omega\left(D_{4}^{\prime}\right)$ is nilpotent, $1+\omega\left(D_{4}^{\prime}\right) \subseteq U\left(F D_{4}\right)$ and $U\left(F D_{4}\right) /(1+$ $\left.\omega\left(D_{4}^{\prime}\right)\right) \cong U\left(F K_{4}\right)$ is an abelian group. So $U\left(F D_{4}\right)^{\prime} \subseteq 1+\omega\left(D_{4}^{\prime}\right)$. Further, $\omega\left(D_{4}^{\prime}\right) \subseteq Z\left(F D_{4}\right)$, thus $\gamma_{3}\left(U\left(F D_{4}\right)\right)=1$ and $U\left(F D_{4}\right)$ is nilpotent of class 2.
2. Since $p>2, F D_{4}$ is semisimple. Hence, by Lemma 1.3, $F D_{4} \cong M\left(n_{1}, D_{1}\right) \oplus$ $M\left(n_{2}, D_{2}\right) \oplus \cdots \oplus M\left(n_{t}, D_{t}\right)$, where $D_{i}^{\prime} \mathrm{s}$ are finite dimensional division algebras over F. Since F is finite, D_{i}^{\prime} s are finite fields and at least one $n_{k}>1$. As $\operatorname{dim}_{F} Z\left(F D_{4}\right)=5, n_{k}>2$ is impossible. Therefore $n_{k} \leq 2$ for all $k \in\{1,2, \ldots, t\}$. Also $F\left(D_{4} / D_{4}^{\prime}\right) \cong F K_{4} \cong F^{4}$ and $F D_{4} \cong M(2, F) \oplus F^{4}$, by Lemmas 1.1 and 1.2 .

Theorem 2.2. Let F be a finite field of characteristic $p>2$ with $|F|=p^{n}=q$. Then

$$
U\left(F D_{8}\right) \cong \begin{cases}G L(2, F)^{3} \times C_{q-1}^{4}, & \text { if } q \equiv \pm 1 \bmod 8 \\ G L(2, F) \times G L\left(2, F_{2}\right) \times C_{q-1}^{4}, & \text { if } q \equiv \pm 3 \bmod 8\end{cases}
$$

Proof. Since $p>2, F D_{8}$ is semisimple and by Lemma 1.3, $F D_{8} \cong M\left(n_{1}, D_{1}\right) \oplus$ $M\left(n_{2}, D_{2}\right) \oplus \cdots \oplus M\left(n_{t}, D_{t}\right)$, where D_{i} 's are finite dimensional division algebras over F. Since F is finite, D_{i} 's are finite fields and at least one $n_{k}>1$. Clearly $n_{k} \leq 3$ for all k. Now $F\left(D_{8} / D_{8}^{\prime}\right) \cong F K_{4} \cong F^{4}$. Further, since $\operatorname{dim}_{F} Z\left(F D_{8}\right)=$ 7, we have the following possibilities:

$$
F D_{8} \cong M(2, F) \oplus M(2, F) \oplus M(2, F) \oplus F^{4}
$$

or

$$
\cong M(2, F) \oplus M\left(2, F_{2}\right) \oplus F^{4}
$$

or

$$
\cong M\left(2, F_{3}\right) \oplus F^{4} .
$$

The conjugacy classes of D_{8} are $\mathcal{C}_{1}=\{1\}, \mathcal{C}_{2}=\left\{r^{4}\right\}, \mathcal{C}_{3}=\left\{r, r^{7}\right\}, \mathcal{C}_{4}=$ $\left\{r^{2}, r^{6}\right\}, \mathcal{C}_{5}=\left\{r^{3}, r^{5}\right\}, \mathcal{C}_{6}=\left\{r s, r^{3} s, r^{5} s, r^{7} s\right\}$ and $\mathcal{C}_{7}=\left\{s, r^{2} s, r^{4} s, r^{6} s\right\}$ and by Lemma $1.4 Z\left(F D_{8}\right)=F \widehat{\mathcal{C}_{1}}+F \widehat{\mathcal{C}_{2}}+F \widehat{\mathcal{C}_{3}}+F \widehat{\mathcal{C}_{4}}+F \widehat{\mathcal{C}_{5}}+F \widehat{\mathcal{C}_{6}}+F \widehat{\mathcal{C}_{7}}$.

If $p \equiv \pm 1 \bmod 8$, then $p^{n} \equiv \pm 1 \bmod 8$ for all n. So, $\widehat{\mathcal{C}}_{i}^{p^{n}}=\widehat{\mathcal{C}}_{i}$ for all, $1 \leq i \leq 7$. Thus $x^{p^{n}}=x$, for all $x \in Z\left(F D_{8}\right)$ and

$$
F D_{8} \cong M(2, F) \oplus M(2, F) \oplus M(2, F) \oplus F^{4}
$$

If $p \equiv \pm 3 \bmod 8$ and n is even, then $p^{n} \equiv 1 \bmod 8$. Again, $\widehat{\mathcal{C}}_{i}^{p^{n}}=\widehat{\mathcal{C}}_{i}$ for all, $1 \leq i \leq 7$ and

$$
F D_{8} \cong M(2, F) \oplus M(2, F) \oplus M(2, F) \oplus F^{4}
$$

If $p \equiv \pm 3 \bmod 8$ and n is odd, then $p^{2 n} \equiv 1 \bmod 8$. So, $\widehat{\mathcal{C}}_{i}^{p^{2 n}}=\widehat{\mathcal{C}}_{i}$ for all $1 \leq i \leq 7$. Then, in this case, $x^{p^{2 n}}=x$, for any $x \in Z\left(F D_{8}\right)$ and

$$
F D_{8} \cong M(2, F) \oplus M\left(2, F_{2}\right) \oplus F^{4} .
$$

Hence

$$
F D_{8} \cong \begin{cases}M(2, F)^{3} \oplus F^{4}, & \text { if } q \equiv \pm 1 \bmod 8 \\ M(2, F) \oplus M\left(2, F_{2}\right) \oplus F^{4}, & \text { if } q \equiv \pm 3 \bmod 8\end{cases}
$$

Theorem 2.3. Let F be a finite field of characteristic $p>2$ with $|F|=p^{n}=q$. Then
$U\left(F D_{16}\right) \cong \begin{cases}G L(2, F)^{7} \times C_{q-1}^{4}, & \text { if } q \equiv \pm 1 \bmod 16 ; \\ G L(2, F) \times G L\left(2, F_{2}\right) \times G L\left(2, F_{4}\right) \times C_{q-1}^{4}, & \text { if } q \equiv \pm 3 \text { or } \pm 5 \bmod 16 ; \\ G L(2, F)^{3} \times G L\left(2, F_{2}\right)^{2} \times C_{q-1}^{4}, & \text { if } q \equiv \pm 7 \bmod 16 .\end{cases}$

Proof. As, $F\left(D_{16} / D_{16}^{\prime}\right) \cong F K_{4} \cong F^{4}$, we have

$$
F D_{16} \cong F^{4} \oplus\left(\oplus_{i=1}^{k} M\left(n_{i}, D_{i}\right)\right)
$$

where $n_{i} \geq 2$ and D_{i} 's are finite dimensional division algebras over fields which are extensions of F. Hence,

$$
Z\left(F D_{16}\right) \cong F^{4} \oplus\left(\oplus_{i=1}^{k} D_{i}\right)
$$

Since $\operatorname{dim}_{F} Z\left(F D_{16}\right)=11, \sum_{i=1}^{k}\left[D_{i}: F\right]=7$.
The conjugacy classes of D_{16} are $\mathcal{C}_{1}=\{1\}, \mathcal{C}_{2}=\left\{r^{8}\right\}, \mathcal{C}_{3}=\left\{r^{ \pm 1}\right\}, \mathcal{C}_{4}=$ $\left\{r^{ \pm 2}\right\}, \mathcal{C}_{5}=\left\{r^{ \pm 3}\right\}, \mathcal{C}_{6}=\left\{r^{ \pm 4}\right\}, \mathcal{C}_{7}=\left\{r^{ \pm 5}\right\}, \mathcal{C}_{8}=\left\{r^{ \pm 6}\right\}, \mathcal{C}_{9}=\left\{r^{ \pm 7}\right\}, \mathcal{C}_{10}=$ $\left\{s, r^{2} s, \ldots, r^{14} s\right\}$ and $\mathcal{C}_{11}=\left\{r s, r^{3} s, \ldots, r^{15} s\right\}$.

For any $l \in \mathbb{N}$, it is easy to see that $x^{q^{l}}=x$ for all $x \in Z\left(F D_{16}\right)$ if and only if $\widehat{\mathcal{C}}_{i}^{q^{l}}=\widehat{\mathcal{C}_{i}}$ for all $i \in\{1,2, \ldots, 11\}$. This is possible if and only if $r^{q^{l}}=r$ or r^{-1}. This is equivalent to $16 \mid\left(q^{l}-1\right)$ or $16 \mid\left(q^{l}+1\right)$.

Now for each $i \in\{1,2, \ldots, k\}$, let $D_{i}^{*}=\left\langle y_{i}\right\rangle$. Then, $x^{q^{l}}=x$ for all $x \in$ $Z\left(F D_{16}\right)$ if and only if $y_{i}^{q^{i}}=y_{i}$. This is possible if and only if $\left[D_{i}: F\right] \mid l$ for all $i=1, \ldots, k$. Thus the least number t such that $16 \mid\left(q^{t}-1\right)$ or $16 \mid\left(q^{t}+1\right)$ is $t=$ l.c.m. $\left\{\left[D_{i}: F\right]: 1 \leq i \leq k\right\}$. Now if,

1. $q \equiv \pm 1 \bmod 16$, then $t=1$;
2. $q \equiv \pm 3$ or $\pm 5 \bmod 16$, then $t=4$;
3. $q \equiv \pm 7 \bmod 16$, then $t=2$.

Clearly $m=16$. Let $a=$ number of simple components in the Wedderburn decomposition of $F D_{16}$. Then

1. $q \equiv 1 \bmod 16$.
$T=\{1\} \bmod 16$ and hence $\mathcal{C}_{i}, i \in\{1,2, \ldots, 11\}$ are the p-regular F conjugacy classes. Hence $a=11$.
2. $q \equiv-1 \bmod 16$.
$T=\{1,-1\} \bmod 16$ and hence $\mathcal{C}_{i}, i \in\{1,2, \ldots, 11\}$ are the p-regular F-conjugacy classes. Hence $a=11$.
3. $q \equiv 3$ or $-5 \bmod 16$.
$T=\{1,3,9,11\} \bmod 16$. Since $r^{9}=r^{-7}, r^{11}=r^{-5}$ and $\left(r^{2}\right)^{3}=r^{6}$, the p-regular F-conjugacy classes are $\{1\},\left\{r^{ \pm 1}, r^{ \pm 3}, r^{ \pm 5}, r^{ \pm 7}\right\},\left\{r^{ \pm 2}, r^{ \pm 6}\right\}$, $\left\{r^{ \pm 4}\right\},\left\{r^{8}\right\},\left\{r s, r^{3} s, \ldots, r^{15} s\right\}$ and $\left\{s, r^{2} s, \ldots, r^{14} s\right\}$. Hence $a=7$.
4. $q \equiv 5$ or $-3 \bmod 16$.
$T=\{1,5,9,13\} \bmod 16$. Since $r^{9}=r^{-7}, r^{13}=r^{-3}$ also $\left(r^{2}\right)^{5}=r^{-6}$, the p-regular F-conjugacy classes are $\{1\},\left\{r^{ \pm 1}, r^{ \pm 3}, r^{ \pm 5}, r^{ \pm 7}\right\},\left\{r^{ \pm 2}, r^{ \pm 6}\right\}$, $\left\{r^{ \pm 4}\right\},\left\{r^{8}\right\},\left\{r s, r^{3} s, \ldots, r^{15} s\right\}$ and $\left\{s, r^{2} s, \ldots, r^{14} s\right\}$. Hence $a=7$.
5. $q \equiv 7 \bmod 16$
$T=\{1,7\} \bmod 16$. Since $\left(r^{3}\right)^{7}=r^{5}$, the p-regular F-conjugacy classes are given by $\{1\},\left\{r^{ \pm 1}, r^{ \pm 7}\right\},\left\{r^{ \pm 2}\right\},\left\{r^{ \pm 3}, r^{ \pm 5}\right\},\left\{r^{ \pm 4}\right\},\left\{r^{ \pm 6}\right\},\left\{r^{8}\right\}$, $\left\{r s, r^{3} s, \ldots, r^{15} s\right\}$ and $\left\{s, r^{2} s, \ldots, r^{14} s\right\}$. Hence $a=9$.
6. $q \equiv-7 \bmod 16$.
$T=\{1,9\} \bmod 16$. Since $r^{9}=r^{-7},\left(r^{3}\right)^{9}=r^{-5}$, the p-regular F conjugacy classes are $\{1\},\left\{r^{ \pm 1}, r^{ \pm 7}\right\},\left\{r^{ \pm 2}\right\},\left\{r^{ \pm 3}, r^{ \pm 5}\right\},\left\{r^{ \pm 4}\right\},\left\{r^{ \pm 6}\right\}$, $\left\{r^{8}\right\},\left\{r s, r^{3} s, \ldots, r^{15} s\right\}$ and $\left\{s, r^{2} s, \ldots, r^{14} s\right\}$. Hence $a=9$.

Now, we have the following possibilities for $\left[D_{i}: F\right]_{i=1}^{k}$ depending on q :

1. $q \equiv \pm 1 \bmod 16$, then $\left[D_{i}: F\right]_{i=1}^{k}=(1,1,1,1,1,1,1)$.
2. $q \equiv \pm 3$ or $\pm 5 \bmod 16$, then $\left[D_{i}: F\right]_{i=1}^{k}=(1,2,4)$.
3. $q \equiv \pm 7 \bmod 16$, then $\left[D_{i}: F\right]_{i=1}^{k}=(1,1,1,2,2)$.

Due to dimension constraints, $n_{i}=2$ for all $1 \leq i \leq k$. Hence

$$
F D_{16} \cong \begin{cases}M(2, F)^{7} \oplus F^{4}, & \text { if } q \equiv \pm 1 \bmod 16 \\ M(2, F) \oplus M\left(2, F_{2}\right) \oplus M\left(2, F_{4}\right) \oplus F^{4}, & \text { if } q \equiv \pm 3 \operatorname{or} \pm 5 \bmod 16 \\ M(2, F)^{3} \oplus M\left(2, F_{2}\right)^{2} \oplus F^{4}, & \text { if } q \equiv \pm 7 \bmod 16\end{cases}
$$

3. Dihedral groups of orders 20 and 40

In this section, we find the structure of $U\left(F D_{5 n}\right), n=2,4$.
Theorem 3.1. Let F be a finite field of characteristic p with $|F|=q=p^{n}$. Let $V_{1}=1+J\left(F D_{10}\right)$ and let $V_{2}=1+\omega(H)$, where $H=\left\{1, r^{5}\right\}$. Then

1. If $p=2$, then
(a)

$$
U\left(F D_{10}\right) / V_{1} \cong \begin{cases}G L(2, F)^{2} \times C_{2^{n}-1}, & \text { if } n \text { is odd } \\ G L\left(2, F_{2}\right) \times C_{2^{n}-1}, & \text { if } n \text { is even } .\end{cases}
$$

(b) V_{1} is a group of exponent 4, order $2^{11 n}$ and nilpotent of class at most 3;
(c) V_{2} is an abelian group of order $2^{10 n}$;
(d) V_{1} / V_{2} is a group of exponent 2 and order 2^{n}.
2. If $p=5$, then
(a) $U\left(F D_{10}\right) / V_{1} \cong C_{5^{n}-1}^{4}$;
(b) V_{1} is a nilpotent group of class 4 and order $5^{16 n}$.
3. If $p \nmid\left|D_{10}\right|$, then

$$
U\left(F D_{10}\right) \cong\left\{\begin{array}{l}
G L(2, F)^{4} \times C_{q-1}^{4}, \quad \text { if } q \equiv \pm 1 \bmod 10 \\
G L\left(2, F_{2}\right)^{2} \times C_{q-1}^{4}, \quad \text { if } q \equiv \pm 3 \bmod 10
\end{array}\right.
$$

Proof. 1. (a) Let $p=2$. Then $H=\left\{1, r^{5}\right\}$ is a normal subgroup of D_{10} and $D_{10} / H \cong D_{5}$. Thus $F\left(D_{10} / H\right) \cong F D_{10} / \omega(H) \cong F D_{5}$ and $\operatorname{dim}_{F}(\omega(H))=10$. Since $\omega(H)$ is a nilpotent ideal, $\omega(H) \subseteq$ $J\left(F D_{10}\right)$. Now, $J\left(F D_{5}\right) \cong J\left(F D_{10}\right) / \omega(H)$. By (Makhijani et al., 2014b Theorem 3.1), $J\left(F D_{5}\right)=F \widehat{D_{5}}$ and $\operatorname{dim}_{F}\left(J\left(F D_{5}\right)\right)=1$. So, $\operatorname{dim}_{F}\left(J\left(F D_{10}\right)\right)=11$ and $\operatorname{dim}_{F}\left(F D_{10} / J\left(F D_{10}\right)\right)=9$.
Now, the 2-regular elements in D_{10} are 1, r^{2}, r^{-2}, r^{4} and r^{-4}. Hence $m=5$. Let a be the number of simple components in the Wedderburn decomposition of $F D_{10}$.
i. If $n=0 \bmod 4$, then $q \equiv 1 \bmod 5$.
$T=\{1\} \bmod 5$ and $\{1\},\left\{r^{ \pm 2}\right\},\left\{r^{ \pm 4}\right\}$ are the 2-regular F conjugacy classes. Hence $a=3$.
ii. If $n=2 \bmod 4$, then $q \equiv-1 \bmod 5$.
$T=\{1,4\} \bmod 5$ and $\{1\},\left\{r^{ \pm 2}\right\},\left\{r^{ \pm 4}\right\}$ are the 2-regular F conjugacy classes. Hence $a=3$.
iii. If $n=1 \bmod 2$, then $q \equiv \pm 2 \bmod 5$.
$T=\{1,2,3,4\} \bmod 5$ and $\{1\},\left\{r^{ \pm 2}, r^{ \pm 4}\right\}$ are the 2-regular F conjugacy classes. Hence $a=2$.
Hence,

$$
F D_{10} / J\left(F D_{10}\right) \cong \begin{cases}F \oplus M(2, F)^{2}, & \text { if } q \equiv \pm 1 \bmod 5 \\ F \oplus M\left(2, F_{2}\right), & \text { if } q \equiv \pm 2 \bmod 5\end{cases}
$$

(b) Since $J^{2}\left(F D_{5}\right)=0$, so $J^{2}\left(F D_{10}\right) \subseteq \omega(H)$ and $J^{4}\left(F D_{10}\right)=0$. Hence V_{1} is a group of exponent 4 which is nilpotent of class at most 3. Further, since $V_{1}=1+J\left(F D_{10}\right),\left|V_{1}\right|=\left|J\left(F D_{10}\right)\right|=2^{11 n}$.
(c) Since $V_{2}=1+\omega(H)$ and $\omega^{2}(H)=0, V_{2}^{\prime}=1$. Hence V_{2} is abelian. Further, $\left|V_{2}\right|=|\omega(H)|=2^{10 n}$.
(d) Let $v=v_{1} V_{2} \in V_{1} / V_{2}$ where $v_{1} \in V_{1}$. For $x \in J\left(F D_{10}\right)$, let $v_{1}=$ $1+x$ so that $v_{1}^{2}=1+x^{2} \in V_{2}$. Hence V_{1} / V_{2} is a group of exponent 2. Further, $\left|V_{1} / V_{2}\right|=2^{n}$.
2. (a) Let $p=5$ and let $K=\left\{1, r^{ \pm 2}, r^{ \pm 4}\right\}$. Then K is a normal subgroup of D_{10}. By (Passman, 1977, Lemma 1.17 and Theorem 2.7),
$J\left(F D_{10}\right)=\omega(K)$. Thus $F D_{10} / J\left(F D_{10}\right) \cong F K_{4} \cong F^{4}$ by Lemma 1.1 and $\operatorname{dim}_{F}\left(J\left(F D_{10}\right)\right)=16$. Hence,

$$
U\left(F D_{10}\right) / V_{1} \cong U\left(F D_{10} / J\left(F D_{10}\right)\right) \cong\left(F^{*}\right)^{4}
$$

(b) $J^{5}\left(F D_{10}\right)=\omega^{5}(K)=0$. Hence V_{1} is nilpotent of class at most 4 . As $r^{2}+4 \in J\left(F D_{10}\right)$, so $4 s+r^{8} s, 4 r+r^{3}, 4 r s+r^{9} s \in J\left(F D_{10}\right)$. Thus $x=r^{2}, y=1+4 s+r^{8} s, z=1+4 r+r^{3}$ and $w=1+4 r s+r^{9} s \in V_{1}$. Now,

$$
\begin{aligned}
A= & (x, y)=3+4 r^{2}+r^{4}+3 r^{6}+\left(1+2 r^{2}+r^{4}+3 r^{6}+3 r^{8}\right) s, \\
B= & (z, A)=2+r^{3}+r^{5}+r^{6}+3 r^{8}+r^{9}+\left(3+4 r+4 r^{2}+2 r^{3}\right. \\
& \left.+2 r^{5}+4 r^{6}+r^{7}+r^{8}+4 r^{9}\right) s, \\
C= & (w, B)=4+3 r+2 r^{2}+3 r^{3}+r^{4}+3 r^{6}+3 r^{8}+2 r^{9} \\
& +\left(4 r+2 r^{2}+4 r^{5}+3 r^{6}+r^{7}+3 r^{8}+r^{9}\right) s \neq 1 .
\end{aligned}
$$

Hence V_{1} is nilpotent of class 4. In the above expression,

$$
\begin{aligned}
y^{-1}= & 4+r^{4}+r^{6}+\left(4+4 r^{2}+r^{6}+r^{8}\right) s, \\
A^{-1}= & 3+r^{6}+3 r^{4}+4 r^{8}+\left(4+3 r^{2}+4 r^{4}+2 r^{6}+2 r^{8}\right) s, \\
z^{-1}= & 2+r+2 r^{2}+4 r^{4}+2 r^{5}+2 r^{6}+3 r^{7}+r^{8}+4 r^{9}, \\
B^{-1}= & 2+2 r+3 r^{2}+2 r^{3}+r^{6}+2 r^{7}+4 r^{8} \\
& +2 r^{9}+\left(1+4 r+r^{3}+r^{4}+4 r^{5}+3 r^{6}+4 r^{7}+2 r^{8}+2 r^{9}\right) s, \\
w^{-1}= & 2+4 r^{6}+\left(3 r+2 r^{7}\right) s .
\end{aligned}
$$

Further, since $V_{1}=1+J\left(F D_{10}\right),\left|V_{1}\right|=\left|J\left(F D_{10}\right)\right|=5^{16 n}$.
3. As $F\left(D_{10} / D_{10}^{\prime}\right) \cong F K_{4} \cong F^{4}$, so by using the Wedderburn-Artin Theorem and Lemma 1.2 we have

$$
F D_{10} \cong F^{4} \oplus\left(\oplus_{i=1}^{k} M\left(n_{i}, D_{i}\right)\right)
$$

where $n_{i} \geq 2$ and D_{i} 's are finite fields. Therefore,

$$
Z\left(F D_{10}\right) \cong F^{4} \oplus\left(\oplus_{i=1}^{k} D_{i}\right)
$$

Since, $\operatorname{dim}_{F} Z\left(F D_{10}\right)=8, \sum_{i=1}^{k}\left[D_{i}: F\right]=4$.
The conjugacy classes of D_{10} are $\mathcal{C}_{1}=\{1\}, \mathcal{C}_{2}=\left\{r^{5}\right\}, \mathcal{C}_{3}=\left\{r^{ \pm 1}\right\}$, $\mathcal{C}_{4}=\left\{r^{ \pm 2}\right\}, \mathcal{C}_{5}=\left\{r^{ \pm 3}\right\}, \mathcal{C}_{6}=\left\{r^{ \pm 4}\right\}, \mathcal{C}_{7}=\left\{s, r^{2} s, \ldots, r^{8} s\right\}$ and $\mathcal{C}_{8}=$ $\left\{r s, r^{3} s, \ldots, r^{9} s\right\}$.

For any $l \in \mathbb{N}$, it is easy to see that $x^{q^{l}}=x$ for all $x \in Z\left(F D_{10}\right)$ if and only if $\widehat{\mathcal{C}}_{i}^{q^{l}}=\widehat{\mathcal{C}}_{i}$ for all $1 \leq i \leq 8$. This is possible, if and only if $r^{q^{l}}=r$ or r^{-1} or equivalently $10 \mid\left(q^{l}-1\right)$ or $10 \mid\left(q^{l}+1\right)$.
Now for each $i, 1 \leq i \leq k$, let $D_{i}^{*}=\left\langle y_{i}\right\rangle$. Then, $x^{q^{l}}=x$ for all $x \in$ $Z\left(F D_{10}\right)$ if and only if $y_{i}^{q^{l}}=y_{i}$. This is possible if and only if $\left[D_{i}: F\right] \mid l$ for all $i \in\{1, \ldots, k\}$. Thus the least number t such that $10 \mid\left(q^{t}-1\right)$ or $10 \mid\left(q^{t}+1\right)$ is $t=$ l.c. $m .\left\{\left[D_{i}: F\right]: 1 \leq i \leq k\right\}$.
If
(a) $q \equiv \pm 1 \bmod 10$, then $t=1$.
(b) $q \equiv \pm 3 \bmod 10$, then $t=2$.

We have $m=10$. Let $a=$ number of simple components in the Wedderburn decomposition of $F D_{10}$. Then
(a) $q \equiv 1 \bmod 10$.
$T=\{1\} \bmod 10$, so $\mathcal{C}_{i}, 1 \leq i \leq 8$ are the p-regular F-conjugacy classes. Hence $a=8$.
(b) $q \equiv-1 \bmod 10$.
$T=\{1,-1\} \bmod 10$, so $\mathcal{C}_{i}, 1 \leq i \leq 8$ are the p-regular F-conjugacy classes. Hence $a=8$.
(c) $q \equiv \pm 3 \bmod 10$.
$T=\{1,3,7,9\} \bmod 10$. Since $r^{7}=r^{-3}, r^{9}=r^{-1}$ and $\left(r^{2}\right)^{3}=r^{-4}$, the p-regular F-conjugacy classes are $\{1\},\left\{r^{ \pm 1}, r^{ \pm 3}\right\},\left\{r^{ \pm 2}, r^{ \pm 4}\right\}$, $\left\{r^{5}\right\},\left\{s, r^{2} s, \ldots, r^{8} s\right\}$ and $\left\{r s, r^{3} s, \ldots, r^{9} s\right\}$. Hence $a=6$.
Now, we have the following possibilities for $\left[D_{i}: F\right]_{i=1}^{k}$ depending on q,
(a) $q \equiv \pm 1 \bmod 10$, then $\left[D_{i}: F\right]_{i=1}^{k}=(1,1,1,1)$.
(b) $q \equiv \pm 3 \bmod 10$, then $\left[D_{i}: F\right]_{i=1}^{k}=(2,2)$.

Due to dimension constraints, $n_{i}>2$ is impossible for any $1 \leq i \leq k$. Thus $n_{i}=2$ for all $1 \leq i \leq k$ and

$$
F D_{10} \cong \begin{cases}M(2, F)^{4} \oplus F^{4}, & \text { if } q \equiv \pm 1 \bmod 10 \\ M\left(2, F_{2}\right)^{2} \oplus F^{4}, & \text { if } q \equiv \pm 3 \bmod 10\end{cases}
$$

Theorem 3.2. Let F be a finite field of characteristic p with $|F|=q=p^{n}$. Let $V_{1}=1+J\left(F D_{20}\right)$.

1. If $p=5$, then
(a) $U\left(F D_{20}\right) / V_{1} \cong G L(2, F) \times C_{5^{n}-1}^{4}$;
(b) V_{1} is a nilpotent group of class 4 and order $5^{32 n}$.
2. If $p \nmid\left|D_{20}\right|$, then

$$
U\left(F D_{20}\right) \cong \begin{cases}G L(2, F)^{9} \times C_{q-1}^{4}, & \text { if } q \equiv \pm 1 \bmod \\ G L(2, F) \times G L\left(2, F_{2}\right)^{2} \times G L\left(2, F_{4}\right) \times C_{q-1}^{4}, & 20 ; \\ & \text { if } q \equiv \pm 3 \text { or } \pm 7 \\ G L(2, F)^{5} \times G L\left(2, F_{2}\right)^{2} \times C_{q-1}^{4}, & \text { if } q \equiv \pm 9 \bmod \\ & 20 ;\end{cases}
$$

Proof. 1. (a) Let $p=5$ and let $H=\left\{1, r^{ \pm 4}, r^{ \pm 8}\right\}$. Then H is a normal subgroup of D_{20}. Again by (Passman 1977, Lemma 1.17 and Theorem 2.7), $J\left(F D_{20}\right)=\omega(H)$. Thus $F D_{20} / J\left(F D_{20}\right) \cong F D_{4} \cong$ $M(2, F) \oplus F^{4}$, by Theorem 2.1 and $\operatorname{dim}_{F} J\left(F D_{20}\right)=32$. Hence,

$$
U\left(F D_{20}\right) / V_{1} \cong U\left(F D_{20} / J\left(F D_{20}\right)\right) \cong G L(2, F) \times\left(F^{*}\right)^{4}
$$

(b) $J^{5}\left(F D_{20}\right)=\omega^{5}(H)=0$. Hence V_{1} is nilpotent of class at most 4. As $h=r^{4}-1$ and $k=s\left(r^{4}-1\right)=r^{16} s-s \in J\left(F D_{20}\right)$, so $x=r^{4}$ and $y=1-s+r^{16} s \in V_{1}$. Then,

$$
\begin{aligned}
& A=(x, y)=3+4 r^{4}+r^{8}+3 r^{12}+\left(1+2 r^{4}+r^{8}+3 r^{12}+3 r^{16}\right) s, \\
& B=(x, A)=1+\left(4 r^{4}+3 r^{8}+2 r^{12}+r^{16}\right) s, \\
& C=(x, B)=1+\left(2+2 r^{4}+2 r^{8}+2 r^{12}+2 r^{16}\right) s \neq 1 .
\end{aligned}
$$

Hence V_{1} is nilpotent of class 4. In the above expression,

$$
\begin{aligned}
& y^{-1}=4+r^{8}+r^{12}+\left(4+4 r^{4}+r^{12}+r^{16}\right) s, \\
& A^{-1}=3+3 r^{8}+r^{12}+4 r^{16}+\left(4+3 r^{4}+4 r^{8}+2 r^{12}+2 r^{16}\right) s, \\
& B^{-1}=1+\left(r^{4}+2 r^{8}+3 r^{12}+4 r^{16}\right) s
\end{aligned}
$$

Further, since $V_{1}=1+J\left(F D_{20}\right),\left|V_{1}\right|=\left|J\left(F D_{20}\right)\right|=5^{32 n}$.
2. Now $F\left(D_{20} / D_{20}^{\prime}\right) \cong F K_{4} \cong F^{4}$. Hence

$$
F D_{20} \cong F^{4} \oplus\left(\oplus_{i=1}^{k} M\left(n_{i}, D_{i}\right)\right)
$$

where $n_{i} \geq 2$ and D_{i} 's are finite fields. Therefore,

$$
Z\left(F D_{20}\right) \cong F^{4} \oplus\left(\oplus_{i=1}^{k} D_{i}\right)
$$

Since, $\operatorname{dim}_{F} Z\left(F D_{20}\right)=13, \sum_{i=1}^{k}\left[D_{i}: F\right]=9$.
The conjugacy classes of D_{20} are given by $\mathcal{C}_{1}=\{1\}, \mathcal{C}_{2}=\left\{r^{10}\right\}, \mathcal{C}_{3}=$ $\left\{r^{ \pm 1}\right\}, \mathcal{C}_{4}=\left\{r^{ \pm 2}\right\}, \mathcal{C}_{5}=\left\{r^{ \pm 3}\right\}, \mathcal{C}_{6}=\left\{r^{ \pm 4}\right\}, \mathcal{C}_{7}=\left\{r^{ \pm 5}\right\}, \mathcal{C}_{8}=\left\{r^{ \pm 6}\right\}$, $\mathcal{C}_{9}=\left\{r^{ \pm 7}\right\}, \mathcal{C}_{10}=\left\{r^{ \pm 8}\right\}, \mathcal{C}_{11}=\left\{r^{ \pm 9}\right\}, \mathcal{C}_{12}=\left\{s, r^{2} s, \ldots, r^{18} s\right\}$ and $\mathcal{C}_{13}=\left\{r s, r^{3} s, \ldots, r^{19} s\right\}$.
Now for any $l \in \mathbb{N}$, we have $x^{q^{l}}=x$ for all $x \in Z\left(F D_{20}\right)$ if and only if $\widehat{\mathcal{C}}_{i}^{q^{l}}=\widehat{\mathcal{C}}_{i}$ for all $1 \leq i \leq 13$. This is possible if and only if $r^{q^{l}}=r$ or r^{-1} or equivalently $20 \mid\left(q^{l}-1\right)$ or $20 \mid\left(q^{l}+1\right)$.
For each $i, 1 \leq i \leq k$, let $D_{i}^{*}=\left\langle y_{i}\right\rangle$. Then $x^{q^{l}}=x$ for all $x \in Z\left(F D_{20}\right)$ if and only if $y_{i}^{q^{l}}=y_{i}$. This is possible if and only if $\left[D_{i}: F\right] \mid l$ for all $i \in\{1, \ldots, k\}$. Thus the least number t such that $20 \mid\left(q^{t}-1\right)$ or $20 \mid\left(q^{t}+1\right)$ is $t=$ l.c.m. $\left\{\left[D_{i}: F\right]: 1 \leq i \leq k\right\}$.
If
(a) $q \equiv \pm 1 \bmod 20$, then $t=1$.
(b) $q \equiv \pm 3$ or $\pm 7 \bmod 20$, then $t=4$.
(c) $q \equiv \pm 9 \bmod 20$, then $t=2$.

Clearly $m=20$. Let $a=$ number of simple components in the Wedderburn decomposition of $F D_{20}$. Then
(a) $q \equiv 1 \bmod 20$.
$T=\{1\} \bmod 20$ and hence $\mathcal{C}_{i}, 1 \leq i \leq 13$ are the p-regular F conjugacy classes. Hence $a=13$.
(b) $q \equiv-1 \bmod 20$.
$T=\{1,-1\} \bmod 20$ and hence $\mathcal{C}_{i}, 1 \leq i \leq 13$ are the p-regular F-conjugacy classes. Hence $a=13$.
(c) $q \equiv 3$ or $7 \bmod 20$.
$T=\{1,3,7,9\} \bmod 20$. Since $\left(r^{2}\right)^{3}=r^{6}$ and $\left(r^{4}\right)^{7}=r^{8}$, the p-regular F-conjugacy classes are $\{1\},\left\{r^{ \pm 1}, r^{ \pm 3}, r^{ \pm 7}, r^{ \pm 9}\right\},\left\{r^{ \pm 5}\right\}$, $\left\{r^{10}\right\},\left\{r^{ \pm 2}, r^{ \pm 6}\right\},\left\{r^{ \pm 4}, r^{ \pm 8}\right\},\left\{s, r^{2} s, \ldots, r^{18} s\right\},\left\{r s, r^{3} s, \ldots, r^{19} s\right\}$. Hence $a=8$.
(d) $q \equiv 9 \bmod 20$.
$T=\{1,9\} \bmod 20$. Since $\left(r^{3}\right)^{9}=r^{7}$, the p-regular F-conjugacy classes are $\{1\},\left\{r^{ \pm 1}, r^{ \pm 9}\right\},\left\{r^{ \pm 3}, r^{ \pm 7}\right\},\left\{r^{ \pm 2}\right\},\left\{r^{ \pm 4}\right\},\left\{r^{ \pm 5}\right\},\left\{r^{ \pm 6}\right\}$,
$\left\{r^{ \pm 8}\right\},\left\{r^{10}\right\},\left\{s, r^{2} s, \ldots, r^{18} s\right\}$ and $\left\{r s, r^{3} s, \ldots, r^{19} s\right\}$. Hence $a=$ 11.
(e) $q \equiv-9 \bmod 20$.
$T=\{1,11\} \bmod 20$. Since $r^{11}=r^{-9}$ and $\left(r^{3}\right)^{11}=r^{-7}$, the $p-$ regular F-conjugacy classes are given by $\{1\},\left\{r^{ \pm 1}, r^{ \pm 9}\right\},\left\{r^{ \pm 2}\right\}$, $\left\{r^{ \pm 3}, r^{ \pm 7}\right\},\left\{r^{ \pm 4}\right\},\left\{r^{ \pm 5}\right\},\left\{r^{ \pm 6}\right\},\left\{r^{ \pm 8}\right\},\left\{r^{10}\right\},\left\{s, r^{2} s, \ldots, r^{18} s\right\}$ and $\left\{r s, r^{3} s, \ldots, r^{19} s\right\}$. Hence $a=11$.
(f) $q \equiv-3$ or $-7 \bmod 20$.
$T=\{1,9,13,17\} \bmod 20$. Since $r^{13}=r^{-7}, r^{17}=r^{-3},\left(r^{2}\right)^{17}=$ r^{-6} and $\left(r^{4}\right)^{17}=r^{8}$, the p - regular F-conjugacy classes are given by $\{1\},\left\{r^{ \pm 1}, r^{ \pm 3}, r^{ \pm 7}, r^{ \pm 9}\right\},\left\{r^{ \pm 2}, r^{ \pm 6}\right\},\left\{r^{ \pm 4}, r^{ \pm 8}\right\},\left\{r^{ \pm 5}\right\},\left\{r^{10}\right\}$, $\left\{s, r^{2} s, \ldots, r^{18} s\right\}$ and $\left\{r s, r^{3} s, \ldots, r^{19} s\right\}$. Hence $a=8$.

Now, we have the following possibilities for $\left[D_{i}: F\right]_{i=1}^{k}$ depending on q,
(a) $q \equiv \pm 1 \bmod 20$, then $\left[D_{i}: F\right]_{i=1}^{k}=(1,1,1,1,1,1,1,1,1)$.
(b) $q \equiv \pm 3$ or $\pm 7 \bmod 20$, then $\left[D_{i}: F\right]_{i=1}^{k}=(1,2,2,4)$.
(c) $q \equiv \pm 9 \bmod 20$, then $\left[D_{i}: F\right]_{i=1}^{k}=(1,1,1,1,1,2,2)$.

Due to dimension constraints, $n_{i}>2$ is impossible for any $1 \leq i \leq k$. Thus $n_{i}=2$ for all $1 \leq i \leq k$ and

$$
F D_{20} \cong \begin{cases}M(2, F)^{9} \oplus F^{4}, & \text { if } q \equiv \pm 1 \bmod 20 \\ M(2, F) \oplus M\left(2, F_{2}\right)^{2} \oplus M\left(2, F_{4}\right) \oplus F^{4}, & \text { if } q \equiv \pm 3 \operatorname{or} \pm 7 \bmod 20 \\ M(2, F)^{5} \oplus M\left(2, F_{2}\right)^{2} \oplus F^{4}, & \text { if } q \equiv \pm 9 \bmod 20\end{cases}
$$

4. Finite fields of characteristic 2

In this section, we find the structure of $U\left(F D_{2^{k}}\right)$ and $U\left(F D_{5.2^{k}}\right)$ over finite fields of characteristic 2 .

Lemma 4.1. Let F be a finite field of characteristic 2. Then $\operatorname{dim}_{F}\left(J\left(F D_{2^{k}}\right)\right)=$ $2^{k+1}-1$ for all $k=2,3, \ldots$.

Proof. If $k=2$, then by Theorem 2.1, $\operatorname{dim}_{F}\left(J\left(F D_{4}\right)\right)=7$. Suppose that $\operatorname{dim}_{F}\left(J\left(F D_{2^{k-1}}\right)\right)=2^{k}-1$. If $H=\left\langle r^{2^{k-1}}\right\rangle=\left\{1, r^{2^{k-1}}\right\}$, then H is normal in $D_{2^{k}}$ and $F\left(D_{2^{k}} / H\right) \cong F D_{2^{k}} / \omega(H) \cong F D_{2^{k-1}}$. So $\operatorname{dim}_{F}(\omega(H))=2^{k}$. Now $\omega(H)$ is nilpotent and so, $\omega(H) \subseteq J\left(F D_{2^{k}}\right)$. Therefore $J\left(F D_{2^{k-1}}\right) \cong$ $J\left(F D_{2^{k}}\right) / \omega(H)$ and $\operatorname{dim}_{F}\left(J\left(F D_{2^{k}}\right)\right)=2^{k}-1+2^{k}=2^{k+1}-1$.

Theorem 4.1. Let F be a finite field of characteristic 2 with 2^{n} elements. Let $V_{1}=1+J\left(F D_{2^{k}}\right)$ and $V_{2}=1+\omega(H)$, where $H=\left\langle r^{2^{k-1}}\right\rangle$. Then

1. $U\left(F D_{2^{k}}\right) / V_{1} \cong F^{*}$;
2. V_{1} / V_{2} is a group of order $2^{\left(2^{k}-1\right) n}$.

Proof. 1. Let $H=\left\{1, r^{2^{k-1}}\right\}$. Then H is normal subgroup of $D_{2^{k}}$. So $D_{2^{k}} / H \cong D_{2^{k-1}}$. Thus $F D_{2^{k}} / \omega(H) \cong F D_{2^{k-1}}$ and $\operatorname{dim}_{F}(\omega(H))=2^{k}$. Now $\omega(H)$ is nilpotent and so, $\omega(H) \subseteq J\left(F D_{2^{k}}\right)$. Thus $J\left(F D_{2^{k-1}}\right) \cong$ $J\left(F D_{2^{k}}\right) / \omega(H)$ and by Lemma 4.1. $\operatorname{dim}_{F}\left(J\left(F D_{2^{k}}\right)\right)=2^{k+1}-1$. So, $\operatorname{dim}_{F}\left(F D_{2^{k}} / J\left(F D_{2^{k}}\right)\right)=1, F D_{2^{k}} / J\left(F D_{2^{k}}\right) \cong F$ and $U\left(F D_{2^{k}}\right) / V_{1} \cong$ $U\left(F D_{2^{k}} / J\left(F D_{2^{k}}\right)\right) \cong F^{*}$.
2. Obviously, $\left|V_{1}\right|=\left|J\left(F D_{2^{k}}\right)\right|=2^{\left(2^{k+1}-1\right) n}$ and $\left|V_{2}\right|=|\omega(H)|=2^{\left(2^{k}\right) n}$. Hence $\left|V_{1} / V_{2}\right|=2^{\left(2^{k}-1\right) n}$.

Lemma 4.2. Let F be a finite field of characteristic 2. Then $\operatorname{dim}_{F}\left(J\left(F D_{5.2^{k}}\right)\right)=$ $5.2^{k+1}-9$, for all $k=0,1,2, \ldots$.

Proof. If $k=0$, then by (Makhijani et al. 2014b, Theorem 3.1), $\operatorname{dim}_{F}\left(J\left(F D_{5}\right)\right)=$ 1. Suppose that $\operatorname{dim}_{F}\left(J\left(F D_{5.2^{k-1}}\right)\right)=5.2^{k}-9$ and let $H=\left\langle r^{5.2^{k-1}}\right\rangle=$ $\left\{1, r^{5.2^{k-1}}\right\}$. Then H is normal in $D_{5.2^{k}}$ and hence $F\left(D_{5.2^{k}} / H\right) \cong F D_{5.2^{k}} / \omega(H) \cong$ $F D_{5.2^{k-1}}$. So $\operatorname{dim}_{F}(\omega(H))=5.2^{k}$. As $\omega(H)$ is nilpotent, $\omega(H) \subseteq J\left(F D_{5.2^{k}}\right)$. Therefore $J\left(F D_{5.2^{k-1}}\right) \cong J\left(F D_{5.2^{k}}\right) / \omega(H)$ and $\operatorname{dim}_{F}\left(J\left(F D_{5.2^{k}}\right)\right)=5.2^{k}-9+$ $5.2^{k}=5.2^{k+1}-9$.

Theorem 4.2. Let F be a finite field of characteristic 2 with 2^{n} elements. Let $V_{1}=1+J\left(F D_{5.2^{k}}\right)$ and $V_{2}=1+\omega(H)$, where $H=Z\left(D_{5.2^{k}}\right)=\left\{1, r^{5.2^{k-1}}\right\}$. Then
1.

$$
U\left(F D_{5.2^{k}}\right) / V_{1} \cong \begin{cases}G L(2, F) \times G L(2, F) \times C_{2^{n}-1}, & \text { if } n \text { is odd } \\ G L\left(2, F_{2}\right) \times C_{2^{n}-1}, & \text { if } n \text { is even } .\end{cases}
$$

2. V_{1} / V_{2} is a group of order $2^{\left(5.2^{k}-9\right) n}$.

Proof. Let $H=\left\{1, r^{5.2^{k-1}}\right\}$. Then H is a normal subgroup of $D_{5.2^{k}}$ and $D_{5.2^{k}} / H \cong D_{5.2^{k-1}}$. Thus $F D_{5.2^{k}} / \omega(H) \cong F D_{5.2^{k-1}}$ and $\operatorname{dim}_{F}(\omega(H))=$ 5.2^{k}. Since $\omega(H)$ is nilpotent, $\omega(H) \subseteq J\left(F D_{5.2^{k}}\right)$. Now, $J\left(F D_{5.2^{k-1}}\right) \cong$ $J\left(F D_{5.2^{k}}\right) / \omega(H)$. By Lemma 4.2 $\operatorname{dim}_{F}\left(J\left(F D_{5.2^{k}}\right)\right)=5.2^{k+1}-9$. Hence $\operatorname{dim}_{F}\left(F D_{5.2^{k}} / J\left(F D_{5.2^{k}}\right)\right)=9$.

Now, the 2-regular elements in $D_{5.2^{k}}$ are $1, r^{2^{k}}, r^{-2^{k}}, r^{2^{k+1}}$ and $r^{-2^{k+1}}$. Hence $m=5$. Let a be the number of simple components in the Wedderburn decomposition of $F D_{5.2^{k}}$.

1. If $n=0 \bmod 4$, then $q \equiv 1 \bmod 5$.
$T=\{1\} \bmod 5$ and $\{1\},\left\{r^{ \pm 2^{k}}\right\},\left\{r^{ \pm 2^{k+1}}\right\}$ are the 2-regular F-conjugacy classes. Hence $a=3$.
2. If $n=2 \bmod 4$, then $q \equiv-1 \bmod 5$.
$T=\{1,4\} \bmod 5$ and $\{1\},\left\{r^{ \pm 2^{k}}\right\},\left\{r^{ \pm 2^{k+1}}\right\}$ are the 2-regular F-conjugacy classes. Hence $a=3$.
3. If $n=1 \bmod 2$, then $q \equiv \pm 2 \bmod 5$.
$T=\{1,2,3,4\} \bmod 5$ and $\{1\},\left\{r^{ \pm 2^{k}}, r^{ \pm 2^{k+1}}\right\}$ are the 2-regular F-conjugacy classes. Thus $a=2$.

Hence,

$$
F D_{5.2^{k}} / J\left(F D _ { 5 . 2 ^ { k } } \cong \left\{\begin{array}{ll}
F \oplus M(2, F)^{2}, & \text { if } q \equiv \pm 1 \bmod 5 \\
F \oplus M\left(2, F_{2}\right), & \text { if } q \equiv \pm 2 \bmod 5
\end{array}\right.\right.
$$

Since $V_{1}=1+J\left(F D_{5.2^{k}}\right)$ and $V_{2}=1+\omega(H),\left|V_{1}\right|=\left|J\left(F D_{5.2^{k}}\right)\right|=2^{\left(5.2^{k+1}-9\right) n}$ and $\left|V_{2}\right|=|\omega(H)|=2^{\left(5 \cdot 2^{k}\right) n}$. Hence $\left|V_{1} / V_{2}\right|=2^{\left(5 \cdot 2^{k}-9\right) n}$.

5. Conclusion

For a finite field F, we have given the structures of $U\left(F D_{4}\right)$ and $U\left(F D_{10}\right)$ in Theorems 2.1 and 3.1 , whereas the structure of $U\left(F D_{8}\right), U\left(F D_{16}\right)$ and $U\left(F D_{20}\right)$ are described in Theorems 2.2, 2.3 and 3.2 , when F has odd characteristic. The unit groups $U\left(F D_{2^{k}}\right)$ and $U\left(F D_{5.2^{k}}\right)$, when characteristic of F is 2, have been studied in Theorems 4.1 and 4.2 .

References

Creedon, L. (2008). The unit group of small group algebras and the minimum counter example to the isomorphism problem. International Journal of Pure and Applied Mathematics, 49(4):531-537.

Creedon, L. and Gildea, J. (2008). The structure of the unit group of the group algebra $F_{3^{k}} D_{6}$. International Journal of Pure and Applied Mathematics, 45(2):315-320.

Creedon, L. and Gildea, J. (2011). The structure of the unit group of the group algebra $F_{2^{k}} D_{8}$. Canadian Mathematical Bulletin, 54(2):237-243.

Gaohua, T. and Yanyan, G. (2011). The unit group of $F G$ of group with order 12. International Journal of Pure and Applied Mathematics, 73(2):143-158.

Gildea, J. (2008). On the order of $U\left(F_{p^{k}} D_{2 p^{m}}\right)$. International Journal of Pure and Applied Mathematics, 46(2):267-272.

Gildea, J. (2010a). The structure of $U\left(F_{5^{k}} D_{20}\right)$. International Electronic Journal of Algebra, 8:153-160.

Gildea, J. (2010b). Units of $F_{5^{k}} D_{10}$. Serdica Mathematical Journal, 36(3):247254.

Karpilovsky, G. (1992). Group Representations, Vol. 1, Part B: Introduction to Group Representations and Characters, North-Holland Mathematics Studies, 175. Amsterdam: North-Holland Publishing Co.

Khan, M. (2009). Structure of the unit group of $F D_{10}$. Serdica Mathematical Journal, 35(1):15-24.

Lam, T. Y. (1991). A First Course in Non Commutative Rings. New York: Springer Verlag.

Makhijani, N., Sharma, R. K., and Srivastava, J. B. (2014a). A note on units in $F_{p^{m}} D_{2 p^{n}}$. Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, 30(1):17-25.

Makhijani, N., Sharma, R. K., and Srivastava, J. B. (2014b). The unit group of finite group algebra of a generalized dihedral group. Asian-European Journal of Mathematics, 7(2):5 pages. https://doi.org/10.1142/S179355711450034X.

Makhijani, N., Sharma, R. K., and Srivastava, J. B. (2014c). Units in $F_{2^{k}} D_{2 n}$. International Journal of Group Theory, 3(3):25-34.

Makhijani, N., Sharma, R. K., and Srivastava, J. B. (2015). The unit group of $F_{q}\left[D_{30}\right]$. Serdica Mathematical Journal, 41(2-3):185-198.

Milies, C. P. and Sehgal, S. K. (2002). An Introduction to Group Rings, Algebras and Applications, Vol. 1. Dordrecht: Kluwer Academic Publishers.

Passman, D. S. (1977). The Algebraic Structure of Group Rings. New York: Wiley-Interscience.

